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recommended in the Mexican ecological criteria of 
water quality for the protection of marine aquatic life 
in coastal areas. Generated models showed a signifi-
cant relationship (P < 0.05) between  NO3-N and band 
reflectance in the infrared (band 5) and short-wave 
infrared (band 6 and band 7) spectra of Landsat-8 
imagery. The B6 band appeared in all models selected 
to estimate  NO3-N in the bay. These results evidence 
the potential of Landsat-8 images for the estimation 
of nitrate in the coastal waters of Sinaloa, México.

Keyword Coastal zone monitoring · Water 
pollution · Remote sensing · Empirical models

Introduction

Nutrient excess in water may cause negative effects 
in aquatic systems, such as excessive growth of plants 
and algae, dissolved oxygen depletion or exhaustion, 
biogeochemical cycle disruption, and biodiversity 
loss (Haggard et al., 2005; Hutchinson, 1973; Smith 
et  al., 1999). In the ocean, nitrogen is regarded as 
the limiting nutrient, whereas estuaries are consid-
ered transition zones concerning nitrogen and phos-
phorus (Caponze & Hutchins, 2013; Correll, 1998). 
Nitrogen, mainly nitrates and ammonia, has been 
associated with algal blooms on the coasts of North 
Sinaloa, Mexico (Martínez-López et  al., 2008). The 
Playa Colorada bay is part of the Playa Colorada-
Santa María La Reforma coastal lagoon system, an 
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essential ecosystem for populations of blue shrimp 
(Litopenaeus stylirostris) inhabiting the Pacific Ocean 
waters of Mexico, as well as other animal and plant 
species of ecological and commercial concern (Lyle-
Fritch, 2003). Located in the north-central part of the 
Sinaloa, the bay provides water for the shrimp farms 
established along its margins. The bay receives aqua-
culture and municipal wastewaters, as well as agri-
cultural wastewaters from Irrigation Districts (ID) 
063 and 074 (González-Márquez et al., 2014). Little 
is known about the pollution load caused by these 
activities, and how this load may affect environmental 
health. Monitoring parameters related to water qual-
ity can be essential for bay management, allowing 
to identify and forecast related environmental prob-
lems (Kouadri et  al., 2022a, b; Mishra et  al., 2021). 
In Mexico, monitoring is performed through the 
national water quality monitoring network, seeking to 
know the spatiotemporal trends of physical, chemical, 
and biological parameters in surface and groundwater 
(Comisión Nacional del Agua, 2022). The informa-
tion generated, however, is not readily accessible at a 
single observation level, but only as annual averages 
or as categorical classifications of water quality. In 
the Playa Colorada bay, there is only one monitoring 
station, where evaluations of total nitrogen, nitrates, 
total phosphorus, phosphates, total suspended solids, 
chemical oxygen demand, biological oxygen demand, 
etc. are made. An average of four measurements are 
made per year, providing insufficient information for 
making spatial and temporal evaluations, as well as 
for defining management strategies (Mishra et  al., 
2022). The  NO3-N concentration recommended in 
the Mexican Ecological Criteria of Water Quality for 
the protection of marine aquatic life in coastal areas 
is 0.04 mg/L (Diario Oficial de la Federación, 1989).

Satellite remote sensing is a feasible tool for gen-
erating information on water quality over large areas, 
solving the problems posed by conventional methods 
(Lim & Choi, 2015; Wang & Yang, 2019). Estimates 
of water quality parameters are based on the relation-
ship between apparent optical properties, as captured 
by satellite sensors, and the inherent optical proper-
ties of water (Mouw et al., 2015). The resulting infor-
mation can be used to generate empirical models by 
correlating water quality parameters, evaluated both 
in situ and in the lab, with reflectance value captures in 
satellite images (González-Márquez et al., 2018; Guo 
et al., 2021; Lim & Choi, 2015; Torbick et al., 2013; 

Wu et al., 2010). These models usually show reliable 
results when applied to the same sites where they were 
generated (Chang et  al., 2014). Empirical models to 
estimate nutrient concentration in water are not com-
mon due to the lack of a signal that can be detected 
by satellite sensors (Goes et  al., 2004). Despite that, 
there are models able to detect nutrient concentration, 
as it can be correlated to optically active water compo-
nents (Goes et al., 1999). Nitrogen and phosphorus do 
not have a direct impact on the visible spectrum of the 
water body, but they do affect color indirectly because 
they promote algae growth (Dong et  al., 2020). In 
estuaries, nitrogen concentration can be related to the 
concentration of suspended solids, an optically active 
compound (Paudel et  al., 2019). Nutrients can be 
released to the water column through biological recy-
cling of organic compounds, as well as from suspended 
particles and resuspended particles in estuaries with 
changing salinities (Bruesewitz et  al., 2017; Tappin 
et al., 2010). Nitrate can be estimated when related to 
optically active compounds (Goes et  al., 1999; Topp 
et  al., 2020). In freshwater, nitrate can be associated 
with chromophoric dissolved organic matter and nitro-
gen oxidation by aerobic bacteria (Khattab & Merkel, 
2013) and in oceans with sea surface temperature and 
chlorophyll-a (Chen & Chen, 2003). Few studies have 
been done focusing on generating models to estimate 
non-optically active parameters in water from satellite 
measurements (Amanollahi et  al., 2017; Guo et  al., 
2021; Khattab & Merkel, 2013), and only one study 
has generated models for estimating nitrates in coastal 
waters (Wang et  al., 2018). However, non-optically 
active parameters are also an important part of water 
quality assessment because even though their estima-
tion through multispectral imaging is challenging, the 
generation of empirical models can contribute to com-
plementing the missing information in space and time.

In this study, visible and infrared spectra reflec-
tance bands, captured with the Operational Land 
Imager (OLI) sensor aboard Landsat-8, are correlated 
to nitrate concentration in the waters of the Playa 
Colorada bay, to generate empirical models and esti-
mate their spatial variation. Although the limitations 
of empirical models for estimating nutrients through 
multispectral images are well known, these models 
can be used to complement the information gener-
ated through conventional methods; they can be used 
to estimate nutrient concentrations in areas within the 
same water bodies studied, where originally no in situ 
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parameters were evaluated or any samples were col-
lected for laboratory analysis.

Materials and methods

Study area

Playa Colorada bay, located in Sinaloa, Northwest 
Mexico (25º 13′ 30″ N; -108º 21′ 30″ W), has tropi-
cal dry weather, with a rainy season ranging from 
June to October with an average precipitation of 
468.8 mm. The period of highest precipitation is from 
July to September. The average annual temperature, 
maximum temperature and minimum temperature 
are 24.1, 45.5, and − 6 ºC, respectively. The average 
annual evaporation is 2391  mm (Climate Comput-
ing project, 2016; Lyle-Fritch, 2003). The bay has 
an area of 6000  ha and is part of the Laguna Playa 
Colorada-Santa María La Reforma coastal lagoon 
system. The length and width of the bay are 15.5 km 
and 10.5  km, respectively; approximately 517 pix-
els long and 350 pixels wide from a Landsat image. 
It has been a Ramsar site since February 2, 2004 
(Ramsar, 2022). The most important use of the bay 
is fishing for shrimp, mullet, crab, and clams, as well 
as other scale fish (Lyle-Fritch, 2003). Shrimp farm-
ing and irrigation agriculture are important economic 

activities in the basin. Although most drainages dis-
charging into the bay area have an agricultural origin; 
untreated municipal wastewaters and shrimp farm 
wastewaters are also discharged into these drainages 
(Fig.  1). Playa Colorada Bay is the main source of 
water for the shrimp farms located in the eastern and 
western municipalities of Guasave and Angostura, 
respectively.

Sampling and water analysis

Four sampling campaigns were carried out in the 
bay, two in spring (May 27, 2015 and June 14, 2016) 
and two in fall (December 12, 2014 and December 5, 
2015). Between six and fourteen sampling sites were 
characterized in each campaign (Table 1). Sampling 
sites were distributed all over the bay water sur-
face (Fig.  1). A Van Dorn bottle (La Motte, model 
JT-1) was used to take 0.5 L samples from the first 
40  cm of the water column. 100  ml of water were 
filtered through 0.45  µm nylon membranes (Milli-
pore, HNWP) and stored in plastic containers. Before 
each sampling event the containers were washed and 
rinsed with a 1:1 hydrochloric acid solution (ana-
lytic grade), then rinsed again with MilliQ® water 
(MilliQ-Plus; resistivity > 18 MΩ cm). Samples were 
stored on ice and transported to laboratory. Nitrate 
nitrogen  (NO3-N) was assessed in the filtered samples 

Fig. 1  Location of the study area and sampling sites in Playa Colorada Bay
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by the cadmium reduction method (Hach method 
8039), 24 h after the samples were taken. A VIS spec-
trophotometer (Hach DR3900) was used for  NO3-N 
determination. Duplicate measurements were taken 
for quality control.

Image acquisition and processing

All samplings, except those taken in 2014, were 
planned to coincide with the days in which Land-
sat-8 took images of the study area, in agreement 
with previous recommendations for water quality 
parameter estimation. (Kloiber et  al., 2002). Three 
Level-2 images from Landsat-8 (path 33; row 42), 
with atmospheric correction, were acquired from the 
U. S. Geological Survey (https:// earth explo rer. usgs. 
gov); surface reflectance images, generated from the 
Land Surface Reflectance Code (LaSRC) (Vermote 
et al., 2016). The RGB image of the study area was 
generated in QGIS (version 3.12), reflectance values 

were extracted and nitrate distribution maps were 
generated in the bay. Only seven of the 11 bands 
generated by Landsat-8, with a spatial resolution of 
30 m, were used to generate the models. The bands 
used were band B1 (coastal/aerosol; 0.43–0.45  µm), 
band B2 (blue; 0.450–0.51  µm), band B3 (green; 
0.53–0.59  µm), band B4 (red; 0.64–0.67  µm), band 
B5 (near-infrared; 0.85–0.88  µm), band B6 (short-
wave infrared 1; 1.57–1.65 µm), and band B7 (short-
wave infrared 2; 2.11–2.29 µm).

Statistical analysis

Prior to model determination, a Shapiro–Wilk test 
was performed to determine whether the data (reflec-
tance values and nitrate concentrations) was normally 
distributed. When the data did not show a normal 
distribution, it was normalized using a decimal loga-
rithm. Models were generated through Stepwise lin-
ear regression using Matlab 2015, with  NO3-N as the 

Table 1  NO3-N 
concentrations in Playa 
Colorada bay

ND no data, N number of 
data

Sampling site December 2014
NO3–N (mg/L)

May 2015
NO3–N (mg/L)

December 2015
NO3–N (mg/L)

June 2016
NO3–N (mg/L)

1 ND ND 0.90 1.00
2 ND 0.95 0.80 1.10
3 ND ND 1.30 1.80
4 ND 1.30 1.30 1.20
5 ND 1.10 1.10 1.55
6 1.00 1.10 1.30 1.70
7 ND ND 0.90 1.50
8 ND 0.93 ND ND
9 ND ND 0.80 1.70
10 0.90 1.00 ND ND
11 0.70 1.00 1.50 ND
12 ND 1.00 ND ND
13 0.80 0.90 ND ND
14 ND 1.25 1.60 1.80
15 ND 0.85 1.00 1.60
16 1.00 0.80 1.20 ND
17 1.00 0.69 1.50 ND
18 ND ND 1.20 1.30
19 ND 1.30 ND ND
Min 0.70 0.69 0.80 1.00
Max 1.00 1.30 1.60 1.80
Average 0.90 1.01 1.17 1.48
Standard deviation 0.126 0.183 0.264 0.284
N 6 14 14 11

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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dependent variable; single band reflectance and band-
combinations (band ratio and band multiplication), 
extracted from Landsat-8 images, were used as inde-
pendent variables. Three scenarios were considered 
for the generation of the models. In scenario one, the 
results of the May, June, and December (spring and 
fall) samplings were considered; in scenario two, only 
the results of May and June (spring) were considered. 
In scenario three, models were generated for each of 
the carried out samplings. In scenarios one and two, 
seventy percent of the data was used to generate the 
models and 30% to validate them (Fig. 2). The coef-
ficient of determination (r2) and the root mean square 
error (RMSE) were applied to assess the performance 
of each model.

Results and discussion

An overview of the measured nitrate concentrations 
in Playa Colorada Bay is presented. The generated 
models from Landsat-8 images and the validation 
processes are described in detail. The spatial distribu-
tion of  NO3-N is then presented in maps.

Nitrate concentration in Playa Colorada bay

The average concentration of  NO3-N, consider-
ing the results of the four sampling campaigns, was 
1.16  mg/L, with a standard deviation of 0.30  mg/L. 
The maximum obtained value, recorded in June of 
2016 at sampling sites 13 and 14, was 1.80 mg/L. The 
minimum value, recorded at sampling site 17 in May 
of 2015, was 0.69 mg/L. Observed  NO3-N concentra-
tions were always higher than 0.04  mg/L, the level 
recommended in the Mexican Ecological Criteria of 
Water Quality for the protection of marine aquatic 
life in coastal areas (DOF, 1989). Average  NO3-N 
concentrations in the bay showed an increasing trend 
over time, with the lowest concentrations occur-
ring in December 2014 and the highest in June 2016 
(Table 1).

Model generation and validation

Through linear stepwise regression analysis, satisfac-
tory models were generated revealing a significant 
relationship between  NO3-N concentrations evalu-
ated in the bay and reflectance values (P < 0.05) from 
Landsat-8 images. The models with a lower number 
of variables, higher r2 and lower RMSE were selected 
to estimate  NO3-N in the bay (Table 2). The compari-
son between measured and estimated  NO3-N concen-
trations is shown in Fig. 3 (scenario two) and Fig. 4 
(scenario three). The model generated in scenario one 
presented the lowest r2 and the highest RMSE of the 
three scenarios. The likely reason for the poor accu-
racy of the regression model for scenario one could 
have been the large spectral variability of the water, 
because that scenario used nitrate concentrations 
obtained in two seasons of the year (spring and fall). 
The changing nature of the components of coastal 
and inland waters is one of the main disadvantages of 
empirical models (Chang et al., 2014).

In scenario two, the simplest model only included 
the B6 band (short-wave infrared 1). Despite the rela-
tively low r2 value (r2=0.657) for this model (Fig. 3a), 
the difference between measured and estimated con-
centrations was low, with an RMSE of 0.202  mg/L 
(Fig. 3b). The model with the highest r2 was obtained 
with data from December 2016 (r2=0.824), corre-
sponding to scenario three (Fig.  4); however, May 
presented a low  r2 and for June no statistically signifi-
cant models could be generated (Table 2).

Fig. 2  Framework for predicting  NO3-N concentration from 
Landsat-8 imagery
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Considering that similar atmospheric condi-
tions and water composition can occur in the bay in 
spring, the model from scenario two (Generated using 
70% of the May and June nitrate concentrations) 

was validated with  NO3-N concentrations that were 
not considered in the model generation (30% of the 
nitrate concentrations); the relationship between 
measured and estimated concentrations showed an r2 

Table 2  Models to estimate  NO3-N

Models in bold were selected to estimate  NO3-N in the bay. For June, no statistically significant models could be generated

Scenario Models* Month RMSE r2

1 NO3-N = 1.0534 + 16.871 * B6 May, December, and June 0.256 0.275
2 NO3‑N = 2.5116 + 0.57621*Log B6 May and June 0.202 0.657
3 NO3-N = 1.9792—0.60992 * (B5/B7) + 0.083417 * (B5/B7)2 May 0.146 0.517

NO3‑N = ‑482.29 + 358.48 * Log B5 ‑ 615.43 * Log B6 + 68,901 
* B7 + 122.98 * (Log B5 * Log B6) – 34,682 * (Log B5 * 
B7) + 54,005 * (Log B6 * B7) ‑ 153.27 * (Log B6)2

December 0.163 0.824

Fig. 3  The relationship between measured and estimated 
 NO3-N with the model generated from scenario two and Land-
sat-8 images. A  Gray and black dashed lines are the line 1:1 

and the regression line, respectively; B  NO3-N evaluated and 
estimated at sampling sites

Fig. 4  The relationship between measured and estimated 
 NO3-N with the model generated from scenario three (Decem-
ber data) and Landsat-8 images. A Gray and black dashed lines 

are the line 1:1 and the regression line, respectively; B  NO3-N 
evaluated and estimated at sampling sites
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like that of the model generation (r2=0.659) (Fig. 5). 
In June 2016, the average reflectance of bands B1 
to B7, at the location of the sampling stations, was 
almost two times higher than that of May 2015, with 
a greater difference between near infrared and short-
wave infrared than among the bands of the visible 
spectrum (Fig.  6). The difference in reflectance val-
ues could be due to the variation in the concentration 
of suspended solids in the bay water. The increase in 
suspended solids favors the increase in reflectance, 
mainly in the red and infrared bands.

Spatial distribution of  NO3-N

The application of empirical models to satellite 
images allowed generating distribution maps of 
 NO3-N concentrations for all the bay surface, in May 
and December 2015, and June 2016 (Fig. 7). Distri-
bution patterns of  NO3-N concentration were differ-
ent in the three months. In general terms, the lowest 
concentrations were found in May and the highest 
in June. In May, the highest  NO3-N concentrations 
occurred mainly along the shores of the bay (Fig. 7a); 
in June were found in the eastern part of the bay 
(Fig.  7c). In December, the highest concentrations 
were found in the southern part of the bay (Fig. 7b). 
There is significant aquaculture development within 
the basin of the Playa Colorada bay, with shrimp pro-
duction starting in May and ending in late Novem-
ber; as well as two important irrigation districts in 
which two agricultural cycles take place, starting in 
November and ending in June, maize being the main 

crop in the region. Due to these activities, the bay is 
constantly receiving elevated nitrate concentrations 
throughout the year. These factors may be influenc-
ing the concentrations present in the bay to be higher 
than those recommended by the ecological criteria for 
water quality (DOF, 1989).

In May and June water channels, connecting 
shrimp farms with the north and northeast part of 
the bay can be observed (Fig.  7a, c, respectively). 
Unlike the influents that discharge into the bay from 
the north, shrimp farm wastewaters that enter from 
the northeast do not cross mangrove areas. Man-
grove wetlands can significantly reduce nitrogen and 
phosphorus in shrimp pond wastewater (Wang et al., 
2021). The effect of such discharges can be seen in 

Fig. 5  Validation of the generated  NO3-N model with scenario two data (May 2015 and June 2016 data). A Gray and black dashed 
lines are the line 1:1 and the regression line, respectively; B  NO3-N evaluated and estimated at sampling sites

Fig. 6  Changes in the average reflectance captured by Landsat-8 
OLI in Playa Colorada bay, during May 27 and December 5, 
2015 and June 14, 2016
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Fig. 7  Spatial distribu-
tion of estimated  NO3-N 
concentrations in Playa 
Colorada bay; a May 2015; 
b December 2015; c June 
2016
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Fig.  7a, mainly on the bay shores where the high-
est concentrations of nitrates occur. The first shrimp 
harvest begins in May and lasts approximately three 
months, which means that during this period the 
amount of wastewater that enters the bay from shrimp 
farms increases; the effect of this activity is shown in 
Fig. 7c, where compared to May, a higher concentra-
tion of nitrates is observed in the whole bay water. 
In December, the main source of wastewater is from 
agricultural activities, which favors a more homo-
geneous distribution of nitrate throughout the bay 
(Fig.  7b). Because shrimp farms are not operating 
during December, high nitrate concentrations are not 
observed on the northern and eastern shores of the 
bay.

Ruiz-Fernández and Páez-Osuna (2004) reported 
maximum  NO3-N concentrations of 1.8  mg/L from 
shrimp pond effluents in southern Sinaloa, consistent 
with the values obtained in this study in June 2016. 
Results that show the negative influence of shrimp 
farm wastewater discharge in the bay by increasing 
nitrate concentration. Nitrate has been associated 
with algal blooms on the coasts of northern Sinaloa 
(Martínez-López et al., 2008); therefore, the contribu-
tion of nitrates, through the discharge of wastewater 
from shrimp farms into the bay, may be having nega-
tive consequences for the ecosystems as well as for 
shrimp farming, considering that Playa Colorada 
Bay is its main source of water.  NO3-N measure-
ments made on the northern coast of Sinaloa between 
November 1999 and August 2000 revealed concentra-
tions 30 times lower than those obtained in this study 
(Martínez-López et  al., 2008). These concentrations 
differ from those in this study, as they were taken in 
sampling sites located on the shoreline, outside the 
bays and coastal lagoons in the zone.

In the ocean, nitrate estimation methods from 
space relate the reflectance of satellite images with 
sea surface temperature and chlorophyll-a; these 
parameters are strongly correlated to phytoplankton 
growth (Chen & Chen, 2003), and nitrate concentra-
tion is estimated from both of them (Goes et al., 1999; 
Joo et  al., 2018). Khattab and Merkel (2013) satis-
factorily estimated nitrate concentrations of fresh-
water bodies with empirical models, finding a B2 
(0.52–0.60 µm)/B3 (0.63–0.69 µm) relationship with 
Landsat-5 in summer, as well as with thermal bands 
of Landsat-7 images in spring. In a freshwater wet-
land, Amanollahi et al. (2017) studied the relationship 

between nitrate and spectral band reflectance of 
Landsat-8 bands, through linear regression analysis 
and neuronal networks; however, the resulting mod-
els generated low  r2 values (< 0.28). Masocha et  al. 
(2018) estimated nitrate concentrations at a reservoir 
in subtropical Africa, using Landsat-8 images; this 
study identified the B6/B5 relationship as a promis-
ing combination for nitrate estimations in the reser-
voir (r2=0.53). In coastal waters, Wang et al. (2018) 
found a significant correlation (r2=0.68) between 
nitrate concentrations measured in the East China 
Sea and the red band (660 nm) of the Geostationary 
Ocean Color Imager (GOCI). The models generated 
in the present study differ from those obtained in the 
mentioned studies above; however, it agrees with 
those reported by Barrett and Frazier (2016) regard-
ing the importance of the B6 band for estimating 
the concentration of water constituents. Barrett and 
Frazier (2016) found that reflectance in the B6 band 
was significantly correlated with both chlorophyll 
and turbidity, as a result of the relationship between 
B6 band reflection and algae/plant production for the 
case of chlorophyll, as well as its relationship with 
suspended sediments, chlorophyll and other dissolved 
organic matter for the case of turbidity. The relation-
ship between the B6 band and nitrate concentration 
found in this research could be caused by the indirect 
relationship between nitrate and bay water compo-
nents, such as algae and suspended sediments. Nitrate 
concentration plays an important role in algal growth.

Conclusions

Empirical models were generated to estimate water 
nitrate concentration in the Playa Colorada Bay. 
These models showed a significant relationship 
between nitrate and bands reflectance of the infrared 
spectra of Landsat-8 (P < 0.05). Nitrate, an impor-
tant compound for water quality assessment, has not 
received much attention in estimates made from sat-
ellite measurements, even though it can be estimated 
using models generated from multispectral images. 
Our results show the potential of Landsat-8 images, 
in particular the infrared spectrum bands, in the gen-
eration of empirical models to estimate nitrate con-
centrations in Playa Colorada Bay.

The application of the models could help to under-
stand the spatial and temporal distribution of nitrates, 
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as well as to locate and evaluate the influence of 
municipal, agricultural and aquaculture wastewater 
discharges in the bay. Considering that Playa Colo-
rada bay is the main source of water for aquaculture 
farms located in the east and west of the municipali-
ties of Guasave and Angostura, respectively, those 
who manage such farms may also benefit from the 
use of the models generated in this research. Any 
future research related to the effect of excess nutri-
ents on the environmental health of the bay, could 
benefit from the use of this data; as can the users of 
the results that are generated by the National Water 
Quality Measurement Network with an increase in 
the available information related to the concentration 
of nitrates and their variation within the bay.
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