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Abstract
This work reports the analysis of Zn ion exchange in thermally modified zeolite A4 (ZA4) for the potential formation of ZnO
nanoparticles. The methodology consists of two steps. Step 1 consisted of carrying out different thermal treatments on ZA4. Step
2 involved the ion exchange of Zn with different concentrations of the Zn ion precursor. XRD and FTIR analyses revealed a
transformation in the crystal and molecular structure of ZA4 after heat treatment. This work has been limited to studying ion
exchange; however, it is very interesting to study the thermal behavior of ZA4 because this could improve the surface area of the
material. The results obtained in this work demonstrate that heat treatment and Zn ion concentration affect the crystallinity and
molecular structure of ZA4.
Keywords: Zn, zeolite A4, heat treatment, structural analysis.

Resumen
Este trabajo reporta el análisis del intercambio de iones de Zn en la zeolita A4 modificada térmicamente (ZA4) para la potencial
formación de nanopartículas de ZnO. La metodología realizada, consta de un proceso de 2 etapas. La etapa 1 consistió en realizar
diferentes tratamientos térmicos en ZA4. La etapa 2 involucró el intercambio iónico de Zn con diferentes concentraciones del
precursor de iones Zn. Los análisis por DRX y FTIR muestran una transformación en la estructura cristalina y molecular de ZA4
después de los tratamientos. Este trabajo se ha limitado al estudio del intercambio iónico, sin embargo, resulta muy interesante
conocer el comportamiento térmico de ZA4, ya que esto, puede favorecer el área superficial del material. Los resultados obtenidos
en este trabajo demuestran que el tratamiento térmico y la concentración de iones Zn afectan la estructura cristalina y molecular
de ZA4.
Palabras clave: Zn, zeolita A4, tratamiento térmico, análisis estructural.
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1 Introduction

Zeolites consist of [SiO4]4- and [AlO4]5- tetrahedral
frameworks connected at vertices by oxygen atoms,
with group I and II elements as exchange ions. The
high selective adsorption capacity of ions is their
main characteristic (Eroglu, Emekci, & Athanassiou,
2017; Leal-Perez, Flores-Valenzuela, Cortez-Valadez,
et al., 2022). In particular, Zeolite Linde Type A
(Zeolite LTA or Zeolite A) was the first synthetic
zeolite commercially available (Breck, Eversole, &
Milton, 1956). The general formula of LTA zeolite is
X12[(AlO2)12(SiO2)12]·27H2O, where X could be K,
Na or Ca (for Ca, 12 is changed by 6 due to the valence
electrons), which are referred to as zeolites A3, A4,
and A5, respectively. Moreover, the ratio of structural
silicon to aluminum (Si/Al) is 1, and sodium ions
are exchangeable structural cations (Julbe & Drobek,
2016). The fact that LTA zeolite has a Si/Al ratio
equal to 1 means that it potentially has a high cation
exchange capacity (Collins, Rozhkovskaya, Outram,
& Millar, 2020).

Ion exchange in zeolites is a metathesis reaction
(double displacement reaction) between the zeolite
and a specific salt, where a specific reaction occurs
between the cations of both species (Hoveyda
& Zhugralin, 2007; Leal-Perez, Flores-Valenzuela,
Vargas-Ortíz, et al., 2022). One of the first ion
exchange researchers studying zeolites was Eichhorn,
who reported that this type of reaction was reversible
(Eichhorn, 1858). However, no industrial applications
of this process are available, and for several years,
zeolites were considered to have simple mineralogical
curiosities. However, around the 1950s, important
deposits were discovered in Japan, Italy, and the
United States. After that, zeolites (called ion exchange
resins) became the main product for solving problems
related to water softening and deionization within a
few years (Colella, 1996; Gans, 1905).

On the other hand, the ion exchange of Zn in
a zeolite can offer a promising precursor for the
formation of ZnO nanoparticles. A controlled size
and homogeneous distribution were demonstrated
for other nanoparticles synthesized from zeolites
(Leal-Perez, Flores-Valenzuela, Vargas-Ortíz, et al.,
2022). Zinc oxide (ZnO) is a semiconductor with
a band gap of 3.37 eV at room temperature.
Different physical and chemical properties can be
obtained depending on the nanostructure morphology
(Reyes-Zambrano, Lecona-Guzmán, Luján-Hidalgo,
& Gutiérrez-Miceli, 2024). For this purpose, ZnO is
considered a technologically relevant material with
a variety of applications, such as semiconductors,
sensors, magnetic and actuator materials, and cosmetic
ingredients (Hasanpoor, Aliofkhazraei, & Hamid
Delavari, 2016). In addition, Zn has healing and

bactericidal properties, which are enhanced by being
in a matrix such as a zeolite with a large surface area
(Rajendran, Kumar, Houreld, & Abrahamse, 2018).

The ion exchange of Zn in zeolites is a relatively
simple process because Zn has a 2+ valence, allowing
only a single oxidation state and a unique way of
bonding to the zeolite structure. There are different
works related to Zn ion exchange and the formation
of nanoparticles (Almutairi, Mezari, Magusin, Pidko,
& Hensen, 2012; Luzgin et al., 2008; Ostroski et al.,
2009). However, no studies on the ion exchange of Zn
in thermally modified zeolites have been reported.

In this work, the effect of Zn ion exchange in A4
zeolite modified by thermal treatment was studied to
increase the surface area of the matrix (ZA4). The
crystalline and molecular structures were defined by
XRD and FTIR.

2 Materials and methods

Synthetic zeolite A4 (Sigma Aldrich, 98 %), zinc
acetate (CH3COO)2Zn.2H2O (Sigma Aldrich, 99 %),
and deionized water were used as the hydrates.

2.1 Thermally modified zeolite A4

Three samples with 12 grams of zeolite A4 were
prepared, and sample 1 was thermally treated at 500
°C for 1 h. The second sample was thermally treated
at 750 °C for 1 h. The third sample was thermally
treated at 1000 °C for 1 h. All the samples were
heated and cooled at a rate of 5 °C/min. These
materials were named ZA4-500, ZA4-750 and ZA4-
1000, respectively.

2.2 Thermally modified zeolite A4

For ZA4-500, the material was divided into 4
containers with 3 g, and 50 ml of distilled water
each was added for hydration for 24 h. Afterwards,
3 solutions of 100 ml of (CH3COO)2Zn.2H2O were
prepared at molarities of 0.01, 0.05, and 0.1 M. Then,
hydrated zeolite and (CH3COO)2Zn.2H2O solutions
were put in a thermal bath to obtain an internal
temperature of 50 °C. After that, a solution of 0.01
M (CH3COO)2Zn.2H2O was slowly added to the
container with hydrated zeolite. A solution of 0.05
M (CH3COO)2Zn.2H2O was slowly added to the
container with hydrated zeolite. A 0.01 M solution
of (CH3COO)2Zn.2H2O was slowly added to a vessel
with hydrated zeolite. The final samples were filtered
and dried at room temperature for 24 h. ZA4-500-0.01,
ZA4-500-0.05, and ZA4-500-0.1 were obtained.

This process was repeated for ZA4-750 and ZA4-
1000 under the same conditions, and the order of the
nomenclature of the samples was maintained.
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2.3 Characterization

XRD analysis was carried out with a PHI5100
BRUKER AXS D8 ADVANCE diffractometer. The
vibrational energy of the bonds present in the
structures of the different samples was determined by
an IRAffinity 1-S Shimadzu Infrared Spectrometer.
Micrographs and EDS results were measured with a
JEOL JSM-7401F field emission scanning electron
microscope (FESEM).

3 Results and discussion

Figure 1 shows the FT-IR spectra of ZA4 and ZA4-
500, ZA4-750, and ZA4-1000. In ZA4, the peaks at
1655 and 3423 cm-1 are attributed to the distinctive
vibrational stretching modes of the -OH bonds present
in both chemical and physical water. Additionally, the
peak at 1000 cm-1 is characteristic of the asymmetric
stretching vibrations of Si-O-Si and Si-O-Al. The
peak at 556 cm-1 indicates the symmetric stretching
vibrations of the Si-O-Si and O-Si-O bonds, while
the peak at 670 cm-1 corresponds to the asymmetric
stretching vibrations of the Si-O-Al bonds (Mozgawa,
Król, & Barczyk, 2011; Şen, Bardakçi, Yavuz, &
Gök, 2008). For ZA4-500, the characteristic peaks
of ZA4 are similar. However, the peak at 556 cm-1

shows a slight shift and the possible presence of a
second peak near 500 cm-1. This may be attributed
to the effect of temperature on the modification
of the molecular structure of ZA4; moreover, the
peaks at 1655 and 3423 cm-1 are very small, which
is caused by thermal treatment (Ates & Hardacre,
2012). For ZA4-750, the peak at 556 cm-1 shifted
to 570 cm-1, and the peak shifted to less than
500 cm-1. In addition, peak formations are observed
in the range of approximately 713 to 633 cm-1,
indicating possible molecular deformation in ZA4
(Aronne, Esposito, Ferone, Pansini, & Pernice, 2002;
Yörükoğullar, Yilmaz, & Dikmen, 2010). These shifts
and peak formations are more evident as the treatment
temperature increases in ZA4; moreover, the peaks at
1665 and 3413 cm-1 disappear. For ZA4-1000, the
peak at 558 cm-1 disappeared, which may indicate
the breakdown of the D4R secondary structure, which
is associated with that peak (Mozgawa et al., 2011),
as well as the shift of the peak at 672 to 687 cm-1,
indicating possibly significant modification in the
molecular structure of ZA4. Similarly, the peaks at
1665 and 3413 cm-1 disappeared after heat treatment.
It can be observed that each of the thermal treatments
applied to ZA4 caused the breakdown of SBU D4R, as
indicated by the peak at 556 cm-1 (Flores-Valenzuela
et al., 2023).
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Figure 2. FT-IR spectra of ZA4-500, ZA4-500-Zn0.01,
ZA4-500-Zn0.05, and ZA4-500-Zn0.1.

Figure 2 shows the FT-IR spectra of ZA4-500,
ZA4-500-Zn0.01, ZA4-500-Zn0.05, and ZA4-500-
Zn0.1. ZA4-500-Zn0.01 shows similar behavior to
that of ZA4-500, with the presence of a new peak at
897 cm-1 attributed to the stretching modes of Zn-O
(Ashokkumar & Muthukumaran, 2014). In addition,
the peaks at 512 cm-1 for ZA4-500-Zn0.05 and ZA4-
500-Zn0.1 are associated with the stretching modes
of Zn-O to octahedral coordination and a possible
increase in the degree of tetrahedral polymerization
of SiO4 (Ginting et al., 2019; Xiong, Pal, Serrano,
Ucer, & Williams, 2006), as well as elongation of
the peak at 897 cm-1, indicating a greater presence
of Zn-O bonds (García-Molina et al., 2024). Another
peak at 1141 cm-1 attributed to the normal polymeric
O-H stretching vibration of H2O in the Zn-O lattice
is observed (Ashokkumar & Muthukumaran, 2014).
These results provide evidence of alterations in the
molecular structure of ZA4-500 due to changes in the
Zn concentration.

Figure 3 shows the FT-IR spectra of ZA4-
750, ZA4-750-Zn0.01, ZA4-750-Zn0.05 and ZA4-
750-Zn0.1. The FT-IR spectra showed no apparent
effect on the characteristic peak for ZA4-750; the
peak at approximately 690 cm-1 was more intense;
however, the FT-IR study was carried out qualitatively.
Furthermore, the peak at 556 cm-1 disappears when
ion exchange is carried out. Therefore, we can affirm
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that the molecular structure of ZA4 thermally treated
at 750 °C is affected by nanoparticle formation, ionic
clusters or simple Zn ion exchange (Flores-Valenzuela
et al., 2023; Ginting et al., 2019).

Figure 4 shows the FT-IR spectra of ZA4-1000,
ZA4-1000-Zn0.01, ZA4-1000-Zn0.05, and ZA4-
1000-Zn0.1. Under experimental conditions, the
FR-IR spectra did not significantly change during
ion exchange; therefore, we can conclude that ion
exchange does not affect the molecular structure of
ZA4 thermally treated at 1000 °C.

Figure 5 shows the X-ray diffraction patterns
of ZA4, ZA4-500, ZA4-750 and ZA4-1000. The
characteristic Miller indices of ZA4 are indicated by
the solid line, indexed with card JCP2:01-089-5423.
For ZA4-500, the same Miller indices characteristic
of ZA4 were observed; however, a slight decrease in
the intensity of the (220), (222) and (420) peaks was
observed because of the heat treatment process applied
to the zeolite. For ZA4-750, the characteristic peaks
of ZA4 are observed, and new peaks at 21.3°, 24.6°,
29.4°, and 35.3° are also observed. According to the
Miller indices, (003), (01-2), (01-3) and (01-4) belong
to the “nepheline” group (Na23.55Al24Si24O96), which
has a monoclinic structure and is indexed with PDF
96-901-0481. Nepheline is a porous tectosilicate with
a chemical formula similar to that of ZA4. It presents
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Conclusion

FT-IR and XRD analyses showed significant
molecular and crystalline structure modifications in
zeolite due to heat treatment, as well as evidence
of changes in each of the samples due to ion
exchange. SEM micrographs showed no significant
evidence of morphological variation. Additionally,
the EDS analysis showed that heat treatment at
500 °C contributed to a greater ion exchange
performance of Zn, which increased with increasing
molar concentration. Furthermore, we conclude that
heat treatments at 750 °C and 1000 °C cause phase
transformations in the zeolite to nepheline, which is
not suitable for ion exchange.

Importantly, the study of the structural and
chemical properties of the thermally modified zeolite
allows the prediction of different technological
applications. This could be the formation of ZnO
nanoparticles to be used as coatings in feed ovens
where the elimination of bacteria harmful to the
human body is required.
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