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Genomic characteristics of Salmonella Montevideo and Pomona: 
impact of isolation source on antibiotic resistance, virulence and 
metabolic capacity
Lennin Isaac Garrido-Palazuelos a, José Roberto Aguirre-Sánchez a, Nohelia Castro- 
Del Campo a, Osvaldo López-Cuevas a, Berenice González-Torres a, 
Cristóbal Chaidez a and José Andrés Medrano-Félix b

aLaboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En 
Alimentación y Desarrollo A.C (CIAD), Culiacán, México; bInvestigadoras e investigadores por México Centro de 
Investigación En Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad 
Alimentaria, Culiacán, México

ABSTRACT
Salmonella enterica is known for its disease-causing serotypes, including 
Montevideo and Pomona. These serotypes have been found in various 
environments, including river water, sediments, food, and animals. 
However, the global spread of these serotypes has increased, leading to 
many reported infections and outbreaks. The goal of this study was the 
genomic analysis of 48 strains of S. Montevideo and S. Pomona isolated 
from different sources, including clinical. Results showed that environ-
mental strains carried more antibiotic resistance genes than the clinical 
strains, such as genes for resistance to aminoglycosides, chloramphenicol, 
and sulfonamides. Additionally, the type 4 secretion system, was only 
found in environmental strains. .Also many phosphotransferase transport 
systems were identified and the presence of genes for the alternative 
pathway Entner-Doudoroff. The origin of isolation may have a significant 
impact on the ability of Salmonella isolates to adapt and survive in 
different environments, leading to genomic flexibility and a selection 
advantage.
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Introduction

Salmonella is a Gram-negative bacterium that causes a wide range of diseases in humans and 
animals. The diversity within the Salmonella genus is vast, with over 2,600 serotypes identified to 
date (Wray and Wray 2000; Kim and Kim 2021). The Centers for Disease Control and Prevention 
(CDC) reported that Salmonella infections cause approximately 1.35 million illnesses and 420 
deaths in the United States (CDC Center for Disease Control and Prevention 2018). This bacterial 
pathogen is primarily transmitted through consumption of contaminated food, particularly raw or 
undercooked eggs, poultry, and meat. Other sources of transmission include contaminated water, 
contact with infected animals, and poor hygiene. Salmonella infection, also known as salmonellosis, 
can cause symptoms, such as fever, diarrhea, abdominal cramps, and vomiting (Coburn et al. 2006; 
Carrasco et al. 2012; Eng et al. 2015). Surface waters are a common habitat for Salmonella, despite 
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the fluctuating and potentially unsuitable conditions for its survival (Moore et al. 2003; Medrano‐ 
Félix et al. 2017). Salmonella encounters stress factors like temperature, pH, and nutrient changes, 
which can decrease its viability and ability to cause infection (Winfield and Groisman 2003). 
However, Salmonella employs survival strategies, such as the starvation stress response (SSR), to 
adapt and survive in nutrient-deprived environments by altering its metabolism and gene expres-
sion and triggering protective mechanisms like biofilm formation and stress protein production 
(Kenyon et al. 2002; Spector and Kenyon 2012). The ability of Salmonella to adapt under stress 
conditions is highlighted by its capacity for horizontal gene transfer (HGT), which enables the 
bacterium to obtain new genetic material from other bacteria, including antibiotic-resistance genes 
(dos Santos et al. 2021). This process is crucial in the evolution of Salmonella (Li et al. 2021), and it 
can lead to severe health consequences for the host (Pradhan and Devi Negi 2019).

Salmonella enterica, a pathogen with a diverse range of serotypes, has caused numerous outbreaks and 
incidents of foodborne illnesses worldwide, including Montevideo and Pomona (Jeong et al. 2017). These 
serotypes have been linked to numerous outbreaks and incidents of foodborne illnesses across the globe, 
demonstrating the worldwide impact of Salmonella infections (Gieraltowski et al. 2012; Harris et al. 2016; 
Paradis et al. 2023). Additionally, they exhibit high adaptability, making them challenging to control and 
prevent. To develop effective measures to curb the spread of this bacterium and reduce the burden of 
foodborne illnesses, it is essential to comprehend the genetic variations and virulence factors associated 
with different serotypes. S. Montevideo and S. Pomona are two serotypes that exhibit resistance to various 
antibiotics and have been associated with human salmonellosis infections (CDC 2012, 2018; 
Punchihewage-Don et al., 2022). S. Montevideo possesses genes that confer resistance to multiple 
antibiotics, increasing its virulence, while S. Pomona has been linked to 18% of human salmonellosis 
infections in the United States due to interactions with reptile pets (Bosch et al. 2015). Genomic studies of 
S. Pomona have identified genes related to dynamic metabolism, resistance to aminoglycoside antibiotics, 
and iron acquisition, contributing to its virulence (Burgueño-Roman et al. 2019). The ability of 
Salmonella to thrive in various environments increases its potential to cause severe disease, especially 
when it returns to a host (Chakroun et al. 2017; Ramírez et al. 2018; dos Santos et al. 2021). To develop 
better diagnostic tools and targeted therapies, it is crucial to study the genetic diversity of Salmonella 
serotypes isolated from different sources (Aguirre-Sanchez et al. 2021; Achtman et al. 2012; Page et al.  
2017). In this sense, this study aimed to analyze the genetic content between clinical and environmental 
strains of S. Montevideo and Pomona, comparing virulence, metabolic capacities, and antibiotic resis-
tance. Understanding the differences and similarities between these strains is essential for improving 
public health outcomes and addressing knowledge gaps in the epidemiology and pathogenicity of this 
bacteria.

Materials and methods

Salmonella Montevideo and Pomona isolates and sequencing

A total of 24 genomes each of S. Montevideo and 24 genomes of S. Pomona were analyzed. This included 
10 clinical and 14 environmental strains of S. Montevideo, as well as 10 clinical and 14 environmental 
strains of S. Pomona. The dataset was retrieved from the National Center for Biotechnology Information 
(NCBI) (Agarwala et al. 2017). The accession numbers and corresponding information for these 
genomes are listed in Supplementary Table S1. In addition, the Laboratorio Nacional para la 
Investigación en Inocuidad Alimentaria (LANIIA) provided a total of four genomes of S. Pomona 
(JCS-04, JCS-07, JCS-08, and JCS-25) and four genomes of S. Montevideo (JCS-06, JCS-27, JCS-28, and 
JCS-34). The genomes were acquired from strains isolated from river sediment in previous studies. The 
Whole Genome Shotgun project of the previous S. Pomona and Montevideo strains mentioned has been 
deposited at DDBJ/ENA/GenBank under the accession JAOBPZ000000000, JAOBPY000000000, 
JAOBPX000000000, JAOBPW000000000, JAOBQD000000000, JAOBQC000000000, JAOBQB00 
0000000, and JAOBQA00000000.
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Assembling and annotation of Salmonella Montevideo and Pomona genomes

Reads quality of the genomes provided by the LANIIA was enhanced using Trimmomatic v0.32, as 
described by Bolger et al. (2014). The initial 20 bases of each sequence were excluded, and a sliding 
window of four bases was employed to identify segments with an average Phred quality score of 15 
or less. Reads with fewer than 50 bases were excluded. In accordance with the methodology 
described by Coil et al. (2015), we employed A5-miseq v20160825 to perform the de novo assembly 
of draft genomes for each river sediment strain.

The amino acid sequences of all genomes in FASTA format were acquired from the RAST seed 
server and annotated using BlastKOALA (Kanehisa et al. 2016) to examine the metabolic pathways, 
transport systems, and secretion systems of Salmonella in clinical and environmental strains. The 
metabolic pathways were subsequently recreated with KEGG Mapper (Kanehisa and Sato 2020) 
based on prior genome annotation.

Identification of antimicrobial resistance and virulence genes

To identify antimicrobial resistance genes in the genomes of S. Pomona and S. Montevideo strains, 
ResFinder v3.2 program was used (Zankari et al. 2012) to conduct a comprehensive search for both 
antimicrobial resistance genes and chromosomal mutations. A criterion was created wherein 
mutations exhibiting a minimum alignment of 70% and identity of 90% or higher were considered. 
In addition, we utilized the ABRicate software v0.8.13 (https://github.com/tseemann/abricate). This 
software was used to do a comparative assessment of resistance gene detection using the 
Comprehensive Antimicrobial Resistance Database (CARD), which can be accessed at: https:// 
card.mcmaster.ca/home. Additionally, this software was utilized to identify virulence genes in the 
genomes of S. Montevideo and S. Pomona strains. The identified genes were compared with the 
virulence factor database VFDB, as described by Liu et al. (2019). The criteria employed were the 
existence of genes with a similarity level above 90% and a minimum alignment threshold of 70%.

Phylogenetic inference

Phylogenetic relationships were established using a core alignment-based phylogenetic tree. The 
harvest suite alignment and visualization tool were utilized for this purpose (Treangen et al. 2014). 
The core genome was aligned using Parsnp (Treangen et al. 2014), considering a randomly selected 
reference. The output obtained was used as an input to create a multi-FASTA file using the 
HarvestTool software (Pisarenko et al. 2019). A Maximum Likelihood (ML) inference by RAxML 
was used to construct a phylogenetic tree considering the general time reversible model of nucleo-
tide under the Gamma model of rate heterogeneity (GTRGAMMA) with a statistical support of 100 
bootstraps replicates (Stamatakis 2015). Visualization and editing of the resulting tree were per-
formed using the online application iTOL (Letunic and Bork 2021). The analysis was conducted for 
both the clinical and environmental strains.

Results

Prediction of Metabolic pathways and capabilities using KEGG mapper

The Montevideo and Pomona strains exhibited various metabolic pathways, including carbohy-
drate, energy, lipid, nucleotide, amino acid, glycan, cofactor and vitamin, and terpenoid and 
polyketide metabolism. The Embden Meyerhof-Parnas (EMP) pathway was present and complete 
in both environmental and clinical strains, while the Entner-Doudoroff (ED) pathway, an alter-
native to the EMP pathway, was also present in all strains (Figure 1). It is suggested that these strains 
may be capable to utilize various carbon substrates, such as d-glucuronate, galactose, d-galactate, 
ascorbate, glycogen, trehalose, N-acetyl-D-glucosamine, and glyoxylate, showing similar nutrient 
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acquisition features regardless of isolation source. Additionally, phosphotransferase systems (PTS) 
for glucose, fructose, lactose, mannose, glucitol, galactitol, l-ascorbate, and nitrogen regulation were 
detected in both environmental and clinical strains, indicating high metabolic adaptability advan-
tageous for Salmonella survival, both outside and inside the host (Figure 2). Interestingly, the 
presence of genes associated with T1SS, T3SS, T6SS, secretory proteins, and twin arginine targeting 
proteins was detected in both environmental and clinical strains (Figure 3). Most environmental 
strains of S. Montevideo and Pomona possessed T4SS genes, which are related to membrane 
proteins and bacterial conjugation. These results indicate that these strains have the potential to 
adapt to different environments and suggest a high capacity for exchanging genetic material. In 
contrast, the clinical strains only displayed the presence of these genes in CFSAN023348, 
CFSAN034931 of S. Montevideo, and PNUSAS005642 of S. Pomona with only VirB5 and VirB6 
genes associated with this particular secretion system.

Antimicrobial Resistance (AMR) genes present in environmental and clinical strains of 
S. Pomona and S. Montevideo

Figure 4 shows the presence of AMR genes in the S. Montevideo strains, which contain AAC(6´)-ly, 
APH(3″)-lb, and APH(6)-ld genes, known for their role in aminoglycoside resistance. The 

Figure 2. Phosphotransferase systems (PTS) for both environmental and clinical strains of S. Pomona and S. Montevideo. The 
green-colored blocks serve as an indication of the existence of the gene associated with the corresponding PTS.
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AAC(6´)-ly gene was found in both environmental and clinical strains, whereas the other two genes, 
APH(3″)-lb and APH(6)-ld, were exclusive to four environmental strains. The presence of ampH in 
clinical and environmental S. Montevideo strains suggest possible resistance to β-lactams. 
Furthermore, clinical and environmental strains of S. Montevideo possess acrA, acrB, and acrD 
genes, which are associated with efflux pumps, as well as emrA, emrB, and emrR genes, which 
encode drug-binding proteins. The four environmental strains exhibited the presence of the floR 
gene, which is related to resistance to florfenicol. The golS and kdpE genes, which are associated 
with metal ion resistance and K+ transport, respectively, were detected in all strains of 
S. Montevideo, including clinical and environmental strains. The marA gene, which regulates an 
efflux pump, was absent in only three environmental strains. The msbA gene, which is involved in 
lipopolysaccharide biosynthesis, was present in all strains except one environmental strain. Notably, 
three environmental strains did not contain the ramA gene which suggest susceptibility to fluor-
oquinolone antibiotics. All clinical and environmental S. Montevideo genomes contained the sdiA 
gene, which is related to bacterial quorum sensing, suggesting the potential for this process to occur, 
which may lead to increased bacterial virulence. Only four environmental strains possessed the sul2 
and tet(A) genes, which are related resistance to sulfonamide and tetracycline, respectively. The tolC 
gene, which is involved in efflux pumps, was found in clinical and environmental S. Montevideo 
strains, suggesting the potential to efflux a wide range of antimicrobial compounds and toxins. 
Finally, the yojl gene, which is related to resistance against antimicrobial peptides, was absent in 
only two environmental strains.

The present study found that all clinical and environmental strains of S. Pomona had the genes 
AAC(6´)-ly, Escherichia coli-ampH, and FosA7. Additionally, the strains had genes related to 
transcriptional regulation, efflux pumps, and different types of antibiotic resistance. The study 
also revealed that the environmental and clinical strains shared the sdiA and tolC genes but lacked 
the yojI gene. These results suggest that there is a similar potential for pathogenicity in both 
environmental and clinical strains of S. Pomona, regardless of the isolation source.

Virulence genes present in environmental and clinical strains of S. Pomona and 
S. Montevideo

The virulence gene profiles of the S. Montevideo strains are illustrated in Figure 4. All environ-
mental and clinical strains of S. Montevideo were found to possess acrB, espO, fepG, misL, ompA, 
sipD, slrp, sopA, sopB, sopD, and tae4. These genes are involved in various functions related to 
pathogenicity, such as efflux pumps, T3SS, iron acquisition, adhesins, porins, translocations 
associated with pathogenicity islands, T4SS secretion effectors, and antibacterial amidases. In 
contrast, mrkA, mrkB, and mrkC, which play a role in fimbriae production, were only detected in 
three clinical strains of S. Montevideo. The allantoinase gene allB was found in only five clinical 
strains, whereas it was present in six environmental strains. Furthermore, avrA, which is associated 
with the T3SS effector, was detected in only three clinical strains and two environmental strains. 
The entA gene, which is involved in siderophore production, was absent in both environmental 
strains. Similarly, entB was absent only in one clinical strain. The two environmental strains lacked 
the fepC gene, which is associated with an inner membrane transporter protein. The pipB2 gene, 
which is related to a secretion effector protein, was found in three clinical strains and two 
environmental strains. On the other hand, the ratB gene, which plays a role in the colonization 
of the human gut, was detected in eight clinical strains and seven environmental strains. 
Interestingly, the sopD2 gene, which is responsible for encoding the secretory protein of the 
T3SS, was absent in three clinical strains. Moreover, sopE2 was not detected in any clinical strain. 
Additionally, one clinical strain and two environmental strains lacked the protein effector-related 
gene, sseL. Furthermore, the steC gene, which is also associated with an effector protein, was absent 
in two environmental strains. Lastly, the tlde1 gene, which is linked to T6SS, was identified in one 
clinical strain and five environmental strains. Figure 5 depicts the existence of several virulence 
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genes in S. Pomona strains, both clinical and environmental. These genes include acrB, fimA, fimC, 
fimD, fimF, fimW, fimY, fimZ, invA, invB, invC, ompA, orgA, rcsB, rpoS, sicA, sicP, sifA, ssax, sscA, 
sseK1, steB, and steC. These genes are responsible for various virulence factors such as efflux pumps, 
fimbriae production, invasion regulation, porins, oxygen control, response regulation to biofilm 
development, sigma factors, T3SS, and secretion effector proteins associated with pathogenicity 
islands. Only two environmental strains had the allB gene, which is associated with allantoinase, 
while one clinical strain had the east1 gene, linked to enteroaggregative heat-stable toxin 1. Four 
environmental strains had genes such as galf, hcp2, ipfE, sspH1, tlde1, and tssL, and one environ-
mental strain was missing avrA and misL genes, linked to an effector protein and T6SS. Only three 
clinical strains had an absence of sopD2 and steA genes, while one environmental strain lacked the 
tae4 gene, linked to antibacterial amidase activity.

Phylogenetic analysis

Phylogenetic analysis showed that the clinical and environmental strains of S. Montevideo and S. 
Pomona were genetically similar, with their core genomes exhibiting > 80% coverage for both 
species (Figures 4 and 5). This suggests a close evolutionary relationship between the clinical and 
environmental isolates of the Salmonella serotype. The constructed phylogenetic tree revealed 
distinct clustering of the clinical and environmental strains into four major clades within each 
serotype, with a combination of clinical and environmental isolates present in each clade. The 
arrangement of genomes in the clades was not influenced by the source of isolation, suggesting that 
there is no discernible difference between clinical and environmental strains solely based on their 
genetic relationship.

Discussion

The Montevideo and Pomona serotypes are known for their capacity to cause illnesses through 
contaminated food, water or contact with reptiles and have been implicated in recent outbreaks in 
the United States, Europe, Australia, and Asia. S. Montevideo has been associated with a growing 
number of cases of illness and outbreaks, while highly pathogenic S. Pomona strains are frequently 
isolated from reptilian species like snakes, lizards, and turtles, which could pose a risk to human 
health as reptiles are popular pets (Lalsiamthara and Lee 2017; Haendiges et al. 2021; Colon et al.  
2022; Lee et al. 2022). This suggests that reptiles may serve as reservoirs for S. Pomona and 
contribute to the spread of the bacteria to humans and other animals (Song et al. 2023). These 
serotypes can also be found in environments such as in river water and sediments, which indicates 
a high risk for individuals to be infected by these serotypes via various routes.

In the present study the analysis 24 genomes of clinical and environmental S. Montevideo and S. 
Pomona strains revealed the presence of the alternative metabolic pathway Entner-Doudoroff in 
environmental and clinical strains of both serotypes, indicating its possible role in the survival and 
persistence of these strains. This pathway allows for the utilization of a broader range of carbon 
sources, enhancing the bacterium’s ability to thrive in diverse environments (Patra et al. 2012; 
Flamholz et al. 2013). Understanding this metabolic pathway could aid in the development of 
targeted interventions to control the spread of these strains and alleviate their impact on public 
health. The versatility in sugar utilization, enabled by the presence of multiple PTS systems, allows 
these strains to adapt to different environments and exploit a wide range of ecological niches, 
enhancing their survival and persistence in different environments (Barabote and Saier 2005; 
Comas et al. 2008; Lim et al. 2019; Jeckelmann and Erni 2019). The PTS system involving 
N-acetyl-D-glucosamine was detected in all strains. Previous research has shown that environ-
mental Salmonella strains in aquatic environments often use this alternative carbon source 
(Medrano‐Félix et al. 2017; Gonzáles-López et al., 2021; Chaidez et al. 2020). In addition, the 
N-acetyl-D-glucosamine PTS has been associated with the induction of the mdtEF genes, which 
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provide resistance to many antibiotics (Hirakawa et al. 2006). This finding highlights the potential 
of targeting this specific system to develop targeted therapies against these strains. Further inves-
tigation into the regulation of these PTS systems could provide valuable insights into how their 
expression can be manipulated to limit their ability to use various carbon sources and ultimately 
hinder their survival. Overall, studying these PTS systems has the potential to contribute to 
understanding their ecological adaptation and support the development of effective intervention 
strategies.

Several AMR genes were identified in both environmental and clinical S. Montevideo and 
Pomona strains. Notably, only the environmental strains of S. Montevideo contained the APH(3″)- 
lb and APH(6)-ld genes, which are responsible for aminoglycoside antibiotic resistance (de Melo et 
al. 2021)). Additionally, the environmental strains of Montevideo were the only ones with the floR 
gene, which confers resistance to florfenicol and chloramphenicol. The presence of this gene in 
environmental strains indicates that antibiotic resistance can be transmitted between environmen-
tal and clinical settings (Cloeckaert et al. 2000; Nasim et al. 2015; Mei et al. 2021). The presence of 
specific genes such as sul2 and tet(A) was exclusively observed in the environmental strains of S. 
Montevideo. These genes confer resistance to sulfonamide and tetracycline, two widely used 
antibiotics in human and animal medicine, respectively, because of their effectiveness against 
various types of bacteria (Pavelquesi et al. 2021). Multiple factors contribute to the acquisition of 
tetracycline resistance, such as mobile genetic elements, ribosome-binding site modifications, and 
chromosomal mutations (Adesoji et al. 2015; Sheykhsaran et al. 2019). These mechanisms lead to 
the spread and persistence of multidrug-resistant strains, which are highly adaptable and challen-
ging to control.

The findings in the present study showed that environmental and clinical strains of S. Pomona 
shared similar AMR gene profiles, suggesting the possibility of resistance gene transmission 
between them. However, the environmental strain JCS-25, obtained from river sediments, exclu-
sively displayed FosA7, a gene providing resistance to fosfomycin. Acquiring this gene is linked to 
the transmission of plasmids, implying the potential transfer of mobile elements to the environment 
where the strains were isolated. This environment may contribute to the spread of antibiotic 
resistance, and the potential transfer of plasmids carrying the gene implies that horizontal gene 
transfer is a crucial factor in the dissemination of antibiotic resistance in the environment (Rehman 
et al. 2017; Wang et al. 2021).

The analysis of virulence genes in S. Montevideo strains revealed that only clinical strains 
isolated from human feces contained mrkA, mrkB, and mrkC genes. The identification of these 
genes as components of the mrk operon and their association with type 3 fimbriae, which promote 
biofilm formation, suggests that clinical strains possess a high potential for persistence and 
colonization (Ong et al. 2008). On the other hand, environmental strains of S. Montevideo mostly 
carry the allB gene, which is involved in allantoinase synthesis and helps the bacterium adapt and 
survive in diverse environments using allantoin as a nitrogen source (Cusa et al. 1999; Hafez et al.  
2017). The presence of these virulence and adaptive genes indicates that both clinical and environ-
mental strains of S. Pomona have the potential to cause various illnesses in humans.

Both environmental and clinical strains of Salmonella possess T1SS, T3SS, and T6SS, which are 
critical for the delivery of virulence factors into host cells and contribute to the pathogenicity of 
Salmonella. The T4SS, which is found in many bacteria including Salmonella, was only observed in 
the environmental strains of S. Montevideo and Pomona. It plays a role in the direct delivery of 
proteins into host cells, promoting infection and survival (Backert and Meyer 2006; Galán and 
Waksman 2018; Bao et al. 2020). The presence of T4SS in environmental strains of Salmonella 
indicates their ability to infect both humans and other organisms. T4SS is also involved in the 
process of conjugation, a crucial mechanism for bacterial gene transfer. The presence of T4SS in 
these strains enhances their capacity to exchange genetic material with other bacteria, which may 
lead to the acquisition of antibiotic resistance genes (Alvarez-Martinez and Christie 2009; Christie 
et al. 2016; Bao et al. 2020). Additionally, T4SS plays a crucial role in Salmonella’s ability to persist 
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within macrophages and epithelial cells by inhibiting the host’s innate immune response (Khajanchi 
and Foley 2022). Understanding the mechanisms of T4SS in Salmonella pathogenesis can provide 
valuable insights for developing targeted therapies against this persistent drug-resistant pathogen. 
Phylogenetic analysis demonstrated that both clinical and environmental strains exhibited genetic 
similarities. This suggests that genetic factors contributing to Salmonella virulence, antibiotic 
resistance and metabolism are likely to be conserved across various environments (Zakaria et al.  
2021). Furthermore, the phylogenetic tree revealed that certain clinical isolates were closely related 
to environmental isolates, suggesting the potential transmission of the pathogen between different 
reservoirs (Pornsukarom et al. 2018). Additionally, the short branches in the tree indicate a high 
degree of genetic relatedness between the strains, suggesting a recent common ancestor (Zhang 
et al. 2006). Elucidating the mechanisms by which Salmonella adapts to different environments can 
provide valuable insights into its evolutionary history and potential future threats. By examining the 
genetic similarities and differences between clinical and environmental strains, it is possible to 
identify the key genetic determinants that drive Salmonella pathogenicity and drug resistance.

Conclusion

In summary, analysis of the genomes of S. Montevideo and Pomona strains from various sources 
demonstrated substantial dissimilarities in their resistance to antibiotics and their capacity to 
transfer genetic material, emphasizing the need to comprehend the genomic attributes of these 
serotypes to control and prevent infections. Future research should focus on elucidating the 
mechanisms underlying the genomic versatility and selection advantage of S. Montevideo and S. 
Pomona strains in different environments, as well as exploring potential interventions to restrict the 
propagation of antibiotic-resistant strains.
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