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Abstract: Public health, production and preservation of food, development of environmentally
friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improve-
ment of water quality, among other domains, can be controlled with the help of chitosan. It has
been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility,
biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of
plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other sub-
stances and materials. In part, its versatility is attributed to the presence of ionizable and reactive
primary amino groups that provide strong chemical interactions with small inorganic and organic
substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used ei-
ther to create new materials or to modify the properties of conventional materials applied on an
industrial scale. Considering the relevance of strategic topics around the world, this review inte-
grates recent studies and key background information constructed by different researchers designing
chitosan-based materials with potential applications in the aforementioned concerns.

Keywords: chitosan; antimicrobial agent; nutraceutical formulations; anticancer drug formulations;
edible coatings; elicitors; textiles; food packaging; catalytic scaffolds; bioflocculation

1. Introduction

Chitosan is an outstanding biodegradable and biocompatible polysaccharide, recog-
nized as safe and produced from an abundant and renewable source (chitin). It is highly
effective, which has been well demonstrated for various applications including food, nu-
traceuticals, pharmaceuticals, medicine, agriculture, textiles, pulp and paper, biotechnology,
cosmetics and environmental chemistry, as previously documented by Morin-Crini et al. [1].
There are indeed more than 2000 applications of chitin and chitosan. Chitosan is a versa-
tile and ideal material due to its intrinsic properties (e.g., non-toxicity, cationic character,
and antibacterial activity) and particular chemical structure. This linear aminopolysac-
charide provides reactive functional groups (-OH and -NH2 with a high percentage of
nitrogen compared to substituted cellulose) that promote suitable chemical interactions
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with small molecules, ions, macromolecules, cell membranes/walls, and metal surfaces
by electrostatic interactions, hydrogen bonding, hydrophobic interactions, and chelation
(see Figure 1) [2–7]. Primary amino groups of chitosan play a key role in its different prop-
erties, such as its cationic nature in an aqueous acidic environment, controlled chemical
interactions, mucoadhesion, in situ gelation, and antimicrobial activity [8]. In aqueous
systems, the interactions between this aminopolysaccharide and target substances/living
organisms depend on the pH of the medium and on the chitosan characteristics such as
molecular weight (MW) and degree of deacetylation (DD). As demonstrated from zeta
potential (ζ) measurements, chitosan is stable in solutions of pH < 6 (ζ > 15 mV), which is
driven by the protonation of the amino groups (pKa ~ 6.4; depending on DD and MW); the
isoelectric point (ζ = 0) of this macromolecule can be found within the pH range 6.9–7.7;
and at higher pH, the polymer backbone becomes negatively charged. Thus, at pH between
6.5 and 8, the chitosan chains show ζ = 0 or near to this value, and therefore electrostatic
interactions are limited [9–11]. However, the chitosan backbone can be modified to adjust
its physicochemical properties (e.g., water solubility) and control its chemical interaction
according to the application requirements [12–14], boosting the performance. Indeed, un-
like chitin and cellulose, the presence of amino groups allows to perform chemical reactions
specific to this reactive site. Depending on the desired goal, chitosan can be used either
as the main component [15,16] or as an adjuvant along with other materials [17,18] for
specific purposes. Another interesting property is its versatility, as chitosan can be used in
different technological forms, such as solutions, powders, fibers, and films, depending on
the intended application.
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molecules, cell, and inorganic substances, as well as the different applications such as issues in
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industry (iv), catalysis (v), and water treatment (vi).

Regarding its interaction mechanisms, it has been stated that chitosan binds to small
molecules like doxorubicin (DOX) or 5-fluorouracil (5FU), where electrostatic repulsion
with positively charged DOX plays a key role and attractive interactions (by hydrogen
bonds) are stronger with chitosan in a more deprotonated state [19], whereas hydrogen
bonds are the principal interaction when non-ionized molecules (5FU) are involved [20].
Thus, chitosan-based therapeutic formulations can be designed to improve bioavailability
and half-life, achieving a longer circulation time and sustained release [21], and reducing
dosage requirements and adverse effects on non-target tissues. In the textile industry,
the affinity of chitosan with dyes is highly relevant because a lower amount of dye is
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required and the dye release to the natural environment is reduced [22]. In agriculture,
controlled release of pesticides can be reached with good bioactivity on the target plant,
avoiding/reducing adverse impacts on the non-target plants and environmental contam-
ination [23]. As an example of interaction with macromolecules, the major constituents
of the intestinal mucus layer are the glycoproteins called mucins, and their interaction
with chitosan can occur via electrostatic interactions, hydrogen bonding, and hydrophobic
interactions [24]. In the human body, the amino groups of chitosan could bind to the sialic
acid of mucins, triggering a better mucoadhesion [25]. In the case of interactions with cell
membranes/walls, cationic chitosan perturbs the negative cell envelope of microorgan-
isms. Thus, chitosan binds on a microbial cell wall preventing nutrients from entering
the cell, alters the cell permeability, and could act as a metal chelator that inhibits micro-
bial growth [5,26]. Therefore, this polymer is an antimicrobial agent that also stimulates
the wound healing process, improves the antimicrobial and physical properties of textile
fibers [27], provides an antimicrobial character and film-forming property for food packag-
ing materials with adjusted tensile strength and elongation at break [28], and is a potential
biostimulant and elicitor in agriculture [29]. For inorganic components involving metal
surfaces, their interaction with the -NH2 and -OH groups of chitosan can be attributed
to the strong chelating interaction between the lone-pair electrons of O or N atoms and
empty d-orbits of the metal [30]; this is an advantage in processes such as the preparation
of 3D-macroporous scaffolds with in situ formed metal nanoparticles (catalysis) [31] and
the removal of heavy metal ions from water (water treatment) [6].

Chitosan is a material with outstanding physical, chemical, and biological properties
that are valuable for a variety of uses. It is a polysaccharide that can help overcome
drawbacks in medicine, postharvest conservation and food packaging, agriculture, the
(cosmeto-)textile industry, catalysis, and water treatment (Figure 1), thus improving human
health, protecting the environment, and sustaining a proper lifestyle. Hence, this review
attempts to integrate the current efforts of different researchers working with chitosan in
the aforementioned applications.

2. Antibacterial and Fungicide Power of Chitosan

It is well known that chitosan can inhibit the growth of bacteria (gram-positive and
gram-negative) and fungi. However, this ability can vary according to many factors
including the DD, the MW, and the molecular chain configuration, which affect the physic-
ochemical properties of the macromolecules [32]. Moreover, differences in the target
microorganism can contribute to this variability. Metabolomics analysis in Listeria innocua
has provided evidence that the initial and the most important targets of chitosan are the
cell membrane and cell wall. The cationic nature of this macromolecule might enable the
interaction with these negatively charged organelles causing its disruption and ultimately
contributing to the antibacterial effect of chitosan [33]. It has been reported that minimum
inhibitory concentration values between different species of Candida spp. vary, probably
due to negative charge density and composition of the cell wall [34]. Furthermore, studies
suggested that chitosan uptake and its antifungal activity against Penicillium expansum (a
fungal pathogen) are dependent on clathrin-mediated endocytosis [35]. To improve the
antimicrobial power of chitosan, modifications of the backbone structure of this polysac-
charide have been carried out. For instance, chitosan Schiff base derivatives, obtained via
coupling chitosan with indole-3-carboxaldehyde, reached inhibition rates of 99% and 92%
in gram-positive (Staphylococcus aureus and Bacillus cereus) and gram-negative (Escherichia
coli and Pseudomonas aeruginosa) bacteria, respectively. The authors suggested that this was
the result of an increased cationic capacity and better hydrophilicity of the polymer chain,
as compared with non-modified chitosan [36]. On the other hand, in fungi, hydrophobicity
is generally associated with better antifungal activity. Substitution reactions with diethy-
laminoethyl and dodecyl groups on chitosan generated macromolecules with amphiphilic
properties, which increased their capacity to form hydrophobic interactions with the fungal
cell wall and resulted in a better growth inhibition index of Aspergillus flavus, a human
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pathogen that can infect crops; moreover, a lower molecular weight led to higher inhibi-
tion [37]. Similarly, double Schiff bases bearing halogeno-benzenes were tested on Botrytis
cinerea and showed increased antifungal effect (inhibitory indices > 95% at 1 mg mL−1) due
to the strong electron-withdrawing property of halogens and the hydrophobicity, although
imine groups might also have contributed to cell death, acting as chelators and affecting the
uptake of essential metals [38]. Because microbial resistance became a major health problem
worldwide, the efficacy of chitosan toward inhibition and re-sensitization of pathogens
is being explored. In this regard, a biodegradable and biocompatible chitosan-derived
cationic polymer (2,6-diamino chitosan) was verified as effective on bacteria of clinical
importance and their multidrug-resistant strains. This notable outcome may be owed to
the improved cationic power of chitosan by the incorporation of additional amino groups
to its chemical structure, which triggered better adsorption onto the membrane of these
bacteria [39]. Furthermore, disk diffusion assays have demonstrated that combination
therapy of chitosan with antifungal drugs (e.g., fluconazole) exhibits remarkable synergis-
tic inhibitory effects not only on sensible but also on resistant clinical strains of Candida
species [26]. Another strategy that has been designed to tackle antimicrobial resistance is
the use of chitosan nanoparticles for biomedical purposes, such as the growth inhibition
of sensible and resistant Nisseria gonorrhoeae. In areas such as aquaculture, where better
options for the treatment and prevention of infections are necessary, chitosan nanoparticles
have yielded a wide range of antimicrobial activity in bacteria and fungi isolated from
Nile tilapia, which is a fish of global importance [40,41]. A sponge-like material obtained
from thymine-modified chitosan derivatives has enhanced the treatment of wounds and
tissue regeneration, and when the degree of substitution increased from 0 to 0.62, the mini-
mal inhibitory concentrations (MICs) decreased from 64 to 16 µg mL−1 for Acinetobacter
baumannii. In this perfect example, the material can confer protection against nosocomial
pathogens that commonly infect wounds [42]. Figure 2 represents an illustrative example
of antimicrobial activities of chitosan-based formulations developed for skin tissue regen-
eration, using chitosan-curcumin nanoparticles and different treatments: 250 µg, 500 µg,
1000 µg, BN = Blank nanoparticles, PC = positive control (Gentamicin), NC = negative
control (distilled water); from that, antimicrobial activity against Staphylococcus aureus and
Pseudomonas aeruginosa was studied. As a result, F2-1000 (1000 µg nanoparticles) reached
similar effects as compared to the positive control and showed higher activity than blank
nanoparticles [43].
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Thus, the effectiveness of chitosan as an antimicrobial agent has been well demon-
strated and projects it as an advanced polysaccharide with unique properties toward the
development of commercial pharmaceutical formulations.
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3. Biomedical Application of Chitosan: Encapsulation of Active Molecules
3.1. Phytochemical Protection Using Chitosan: Nutraceutical Formulations

Natural products such as plant-derived nutraceuticals, commonly used as functional
ingredients in food, represent a suitable option to enhance treatments for cancer, diabetes,
bacterial infections, and other diseases [44,45]. However, nutraceuticals exhibit limited
gastrointestinal permeability and are susceptible to certain conditions such as degrada-
tion reactions and changes in pH and temperature [46]. These disadvantages affect the
performance of the active agents during their oral administration. In this sense, colloidal
carriers based on chitosan have been developed to protect these substances, obtaining
micro- and nano-particles with biocompatible and biodegradable characteristics [47]. The
interactions between the aminopolysaccharide and nutraceutical compounds can evolve
from hydrogen bonds and electrostatic interactions. Specifically, it has been reported that
the electrostatic interaction between curcumin and chitosan nanoparticles has a strong cor-
relation with the number of intermolecular hydrogen bonds [48]. As it is well known, -NH2
groups onto this polysaccharide allow its chemical derivatization and grafting to improve
its physicochemical properties [49], where one of the objectives is to enhance the water
solubility of this macromolecule, increasing the permeability of hydrophobic nutraceuticals,
rising the potential of loaded particles as carriers for oral delivery [50]. Regarding mucins,
which are glycoproteins that are the major constituents of the intestinal mucus layer, their
interaction with the chitosan backbone depends on the properties of both (mucins and the
polymer) and can occur via electrostatic interactions, hydrogen bonding and hydrophobic
interactions [24]; the amino groups of chitosan can bind to the sialic acid of mucins resulting
in a better mucoadhesion [25], as well as the change in the surface’s charge (from negative
to positive) of chitosan could trigger an increase in the adhesion of loaded particles on the
intestinal mucosa [25,51]. In this topic, several studies have reported the development of
nutraceutical formulations for oral administration using chitosan and modified chitosan.
For instance, researchers reported that apocynin (an anti-inflammatory phytochemical
extracted from roots of Apocynum cannabinum) can be encapsulated in a w/o/w emulsion
with non-modified chitosan, producing microparticles with suitable sizes around 326 nm
(PDI = 0.201) and an encapsulation efficiency of 45%, and providing controlled drug release
under in vitro gastrointestinal conditions (9.7% and 28.8% at a pH of 1.2 and 6.8, respec-
tively). Furthermore, good stability under storage and large periods of absorption by the
oral route were registered [52]. Conversely, the same guest molecule (apocynin) was loaded
in a platform from modified chitosan oligosaccharide crosslinked with tripolyphosphate
(TPP), resulting in a higher particle size (436 nm; PDI = 0.39), lower encapsulation efficiency
(35%), and higher drug release percentage at pH 1.2 (44%) in comparison to the previous
report using non-modified chitosan. Moreover, the authors indicated that this carrier
system presented good stability and enhanced efficacy in longer-time oral administration
for gastric ulcers [53]; namely, the modification of chitosan can be useful for specific pur-
poses. Similarly, nanogels from chitosan grafted by ρ-coumaric acid loaded with Syzygium
aromaticum essential oil (particle size = 255 nm) exhibited a slow in vitro release at pH 7.4
(87.5% after 16 days); in addition, the system resulted in increased antioxidant activity
and great potentials for boosting the antibacterial activity of the native essential oil [54].
Another example is the preparation of chitosan-polycaprolactone nanoparticles loaded
with thymoquinone (particle size = 182 nm), which showed a suitable control release of
up to 24 h in simulated intestinal fluids, providing excellent mucoadhesion properties and
improved oral bioavailability [25]. In other work, when compared to chitosan, copolymers
based on chitosan and polyethylene glycol methyl methacrylate (PEGMA) loaded with
phenolic compounds (extracted from oregano) resulted in lower particle size (458 nm),
more controlled release patterns in response to pH changes, and higher protection for
the active agents in simulated gastric conditions (see the cumulative release profiles in
Figure 3). However, this study revealed that the carrier system prepared with non-modified
chitosan (particle size = 1106 nm) had better loading efficiency and was more stable (zeta
potential = 50 mV) than the block copolymers-based system (zeta potential = −15 mV) [55].
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In the same way, the encapsulation of quercetin in platforms developed from chitosan
and soybean polysaccharides has resulted in nanoparticles with appropriate size (close
to 24 nm) for targeting specific cells in the treatment of numerous diseases; in this case,
chitosan helped to obtain a more stable complex [56]. In addition, several reports confirmed
that chitosan nanoparticles loaded with onion extract [57], resveratrol, and ferulic acid [58]
successfully induced apoptosis and possessed cytotoxicity activity against breast and skin
cancer, respectively.
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As described, chitosan is a powerful material that helps protect nutraceuticals from
premature degradation derived from different factors (e.g., light, pH, and temperature) and
improves the bioavailability of these active compounds. Additionally, some formulations
involving chitosan-based materials and nutraceuticals can be easily prepared.

3.2. Chitosan in Synthetic Drug Encapsulation: Anticancer Drug Formulations

Cancer is a leading cause of death worldwide, and even though chemotherapy is
one of the most effective methods for treating cancer, its clinical application needs to be
improved due to the antineoplastics’ cytotoxicity, and the fact that many chemo-drugs
are poorly water-soluble, lack of targeted delivery, have side effects, and experience drug
resistance [59]. A drug delivery system intended for cancer should be biocompatible and
maintain the drug’s therapeutic activity, delivering the antineoplastic to the target tissue
in a controlled way. That could allow achieving the desired concentration while reducing
systemic side effects and the therapeutic dose [21,60]. Among drug delivery systems,
nanosized carriers are an outstanding approach because they have shown high drug load-
ing efficiency and could penetrate tissues accumulating around the tumor [21]. For that,
chitosan has been widely studied developing pH-responsive drug delivery systems, which
swell in an acidic medium due to the protonation of amino groups onto the polysaccharide.
Thus, this biocompatible polymer is suitable for drug delivery in cancer, where the tumor
microenvironment exhibits a low pH due to the anaerobic metabolism [60]. In contrast
to healthy tissues, during their progression state, tumors may exhibit a higher or lower
temperature as a result of increased vascularization or reduced metabolic activity, respec-
tively [61]. Hence, thermosensitive nanocarriers containing chitosan have been designed
for cancer therapy. For that, chitosan grafted with poly(N-vinylcaprolactam) or poly(N-
isopropylacrylamide) are the most-used copolymers in trials where the temperature is a
triggering factor for drug release [62,63]; this responsiveness is derived from a reversible
phase transition based on their lower critical solution temperature (LCST). Additionally,
dual- and triple-stimuli responsive materials are created for achieving a targeted and con-
trolled drug release. Examples of dual-responsive chitosan-based materials include those
that combine temperature and pH-sensitive systems [64,65], as well as those that use pH
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and electric field-sensitive polymers [66] for triggering drug release. It has been proposed
that chitosan can bind to small molecules like doxorubicin, where the binding free energy
can depend on the degree of protonation when electrostatic repulsion with positively
charged (DOX) takes place, so chitosan in a more deprotonated state allows stronger hydro-
gen bonds [19]. In the case of non-ionized molecules like 5-fluorouracil, hydrogen bonds
have been proposed as the principal reason for the strong interactions between the drug
and the chitosan-based carrier [20]. In other contributions, nanoparticles from modified
chitosan encapsulating chemotherapeutics such as doxorubicin (encapsulation efficiency
up to 85%), 5-Fluorouracil (encapsulation efficiency up to 86%), oxaliplatin, methotrexate,
and paclitaxel (encapsulation efficiency up to 79%) have been developed and evaluated
as a potential treatment for cancer [67–69]. Furthermore, chitosan-based micelles (particle
size = 211 nm; drug loading capacity = 54%) have presented outstanding pH-triggered
doxorubicin release with negligible premature drug leakage in 60 h, providing better tumor
cell growth inhibition than the free drug [70]. Furthermore, micelles (average size < 200 nm;
zeta potential = 43 mV) obtained with amphiphilic chitosan grafted with O-methyl-O′-
succinyl polyethylene glycol (mPEG) and oleic acid were developed for oral administration
of camptothecin (CPT; drug loading around 8%), helping to decrease colorectal cancer
(CRC) progression. This platform improved the aqueous solubility of CPT and protected it
from gastrointestinal conditions, resulting in anticancer activity against CRC cell lines (such
as Caco-2 and HT29), and a significant decrease in tumor growth and inflammation was
observed [71]. As an example of triple-stimuli responsive materials, a cascade-responsive
nano-platform (particle size < 200 nm) was developed for breast cancer therapy. The system
combined the thermosensitive characteristic of poly(N-vinylcaprolactam), the acidic pH
response of chitosan, and the cell-penetrating peptide, attaining selective nanoparticle
penetration in tumor cells for doxorubicin release; as a result of in vitro and in vivo trials,
the formulation that had doxorubicin was selectively taken up by cancerous cells [67].
Figure 4 shows the results of in vivo tests using chitosan in formulations (PEG-HER NPs)
against cancer; CS-LO-PEG-HER NPs were prepared from chitosan (CS), L-lysine α-oxidase
(LO), polyethylene glycol 600 (PEG), and herceptin (HER). The authors stated that the
nanoparticles presented cytotoxicity in BT474-xenograft tumor mice by promoting reactive
oxygen species, mitochondrial membrane potential loss, and nucleus damage, resulting
in a significant tumor cell reduction and avoiding damage in the kidney, liver, and spleen.
Further, they indicated that the system enhanced the utilization of LO to achieve a promis-
ing anticancer effect [72]. As is known, PEG helps increase the penetration ability of the
drug delivery system [73]. Additionally, chitosan functionalization has been exploited for
tumor targeting focused on overexpressed surface molecules or receptors on the cancer cell
membrane, and single receptor targeting has been developed [74,75]; however, a dual recep-
tor is preferred to enhance penetration. For example, folate receptors (FR) and epidermal
growth factor receptors (EGFR) are key markers for tumor tissues. An FR ligand is folic acid
(essential for cell growth and DNA replication), and an EGFR ligand is cetuximab. For lung
carcinoma treatment, docetaxel-loaded chitosan nanoparticles, decorated with the dual re-
ceptor targeting of FR and EGFR, showed improved bioavailability and half-life, achieving
longer circulation time and sustained release [21]. In summary, chitosan-based materials
have been tested and resulted in outstanding candidates for drug delivery systems toward
controlled-targeted drug release, improving the bioavailability and reducing systemic side
effects of antineoplastics. However, these formulations continue on the winding road of
evaluations required before they can be considered for chemotherapy in patients.
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4. The Role of Chitosan in Food: Material to Extend the Shelf Life
4.1. Coatings from Chitosan for Fruits and Vegetables

At the present time, besides the consumer interest in food quality and safe foods with
new functionalities, it is required new materials with antimicrobial properties protecting
fruits and vegetables during storage, which has extended the research concerning coating
materials that can be fully eaten [76,77]. In addition, consumers demand foods with
environmentally friendly packaging, forcing the industry to innovate and develop new
packaging strategies. Chitosan fits perfectly with this challenge.

Edible coatings are thin layers made from edible materials that are formed into solid
sheets and then applied over the food product [78]; these coatings help prevent moisture
loss and microbial development, establishing a semi-permeable safety barrier and main-
taining the product’s structural integrity. Eventually, they could contain antioxidants and
antimicrobials as to avoid deterioration in food products [79]. Chitosan is considered a
suitable material for the purposes of coating formation for fruits and vegetable protection
because it is biodegradable and biocompatible, has biocidal activity and gas barrier prop-
erties, and yields edible coatings with excellent adhesiveness and cohesion with smooth
surfaces for food products [80]. Authors have stated that suitable chitosan-based films
do not alter the appearance, flavor, aroma, or texture of fruits (e.g., strawberries) [81]; in
addition, this material helps control the oxidative stress, preserving a proper balance of
reactive oxygen species in fruit cells [82]. Furthermore, chitosan allows an easy combina-
tion with additional components toward film formation, such as other polysaccharides,
plasticizers, proteins, or lipids. Hence, this outstanding polymer favors the formation of
coating and films with good mechanical properties that have selective permeability to
oxygen [83]. Parameters such as tensile strength and elongation at break can be adjusted
by using an optimal content of chitosan [84]. Researchers have indicated that a higher
chitosan content (more free amino groups of the polymer) in composite films led to a more
compact structure, decreased permeability, and enhanced antioxidant activity [85]. There
are several methods to obtain chitosan edible coatings. The most popular is the casting,
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where the coating formation occurs owing to the preservation of chain entanglements and
intermolecular interactions, such as electrostatic and hydrogen bonds, promoted during the
drying process [86]. With this strategy, the tensile strength, swelling power, and greenness
value can be controlled through chitosan concentrations and drying temperatures [87].

As illustrative examples, from chitosan-based films plasticized with spermidine
and/or glycerol, authors reported that the incorporation of spermidine increased markedly
the elongation at break, just as proper concentrations of both spermidine and glycerol
enhanced the extensibility and plasticity; also, the gas permeability (GP) was reduced
(2.40 cm3 mm m−2 day−1 kPa−1) but the water vapor permeability (WVP) was higher
(0.37 cm3 mm m−2 day−1 kPa−1), as compared with single chitosan (GP = 15.81 cm3 mm
m−2 day−1 kPa−1; WVP = 0.05 cm3 mm m−2 day−1 kPa−1) [88]. Similarly, researchers
carried out the preparation of alginate/chitosan-mixed edible films as a coating on figs
(Ficus carica), and found that the coating preserves bioactive compounds and the antioxi-
dant capacity of the product during storage [89]. In other work, Pavinatto et al. studied
chitosan-based coatings for the mechanical and biological protection of strawberries, where
glycerol was used to enhance elasticity and hydrophobic character. The results showed
that fungal growth in coated strawberries was not detected (after 7 days at 23 ◦C) when
chitosan/glycerol-30% films were used, but uncoated strawberries were completely taken
up by fungi [81]. In the same sense, an edible antimicrobial coating was produced from
chitosan modified with monomethyl fumaric acid (CS-MFA) for fresh strawberries; when
compared with the non-modified polymer and the control samples, CS-MFA decreased
the weight loss, total aerobic count, and the count of yeast and molds [90]. In another
contribution, the protection of persimmon fruits (Diospyros kaki L.) was studied using
edible coatings from nanochitosan (Figure 5B) and rosmarinic acid-mediated selenium
nanoparticles (Figure 5C), obtaining better results with the nanocomposite containing ros-
marinic acid/Se to prevent black rot disease and preserve firmness of fruits after 14 days
of storage, compared with single chitosan and the uncoated fruit (Figure 5A). This result
can be attributed to the synergistic effect of chitosan–rosmarinic acid-Se [91]. Thus, chi-
tosan based-coatings are highly promising materials for extending the shelf life of fruits
during storage.
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Although the laboratory results are convincing, the application of chitosan in the
packaging sector has not yet reached the stage of industrialization because its price is still
high. However, this sector will develop in the coming years, for example, with the aid of the
nanotechnology, which is an interesting approach in the formulation of active ingredients
for packaging applications.

4.2. Biodegradable Plastics Containing Chitosan: Food Packaging

Biodegradable plastics are materials that can be broken down into water and CO2
by naturally occurring activities of bacteria, fungi, and algae. Thus, the degradation rate
depends on the environments where they end up (e.g., soil or marine water) [92]. In
this topic, several variables affect the biodegradability, including the raw material, chemi-
cal composition, final product structure, and the environmental conditions in which the
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product is expected to biodegrade [93]. Poly(lactic acid) (PLA), obtained from renewable
sources, seems to be one of the most promising biodegradable materials for replacing
plastics derived from petroleum, because this polymer provides similar or better properties
than conventional plastics [94,95]. However, despite the biological compatibility and high
transparency of PLA, properties such as high flammability, poor ultraviolet resistance, and
brittleness need to be addressed [96,97]. To this end, biodegradable-renewable polysaccha-
ride nanoparticles like cellulose, starch, chitin, and chitosan are a preferred alternative to
use together with PLA, thus creating nanocomposites. Particularly, chitosan possesses ad-
ditional advantages such as antimicrobial activity, the possibility of chemical modification
from its reactive amino groups, and excellent functional properties when combined with
other materials [98–100]. Adding different content (0–5.0% w/w) of chitosan nanoparticles
to PLA by twin-screw extrusion benefits the properties of the resulting composite by en-
hancing the elongation and the impact strength; however, the tensile strength and thermal
stability are decreased [101]. Another important aspect of these plastics is biodegradability;
in this regard, a film based on PLA and chitosan was fabricated by a non-solvent induced
phase separation method. The synthesized film presented a porous structure where the
pore size can be changed by modifying the PLA/chitosan ratio, and more importantly,
the degradation rates were proportional to the pore size; therefore, tunable degradation
rate can be obtained [102]. The degradation behavior under different times of standard
weathering conditions has been analyzed for a film containing polyethylene, PLA, and
chitosan prepared by extrusion. The films containing a mixture of synthetic and natural
polymers are more susceptible to degradation in comparison to films without chitosan.
Moreover, the incorporation of a compatibilizer (poly (ethylene-g-maleic anhydride)) into
the films increases the degree of homogeneity and favors film degradation without a signif-
icant effect on their thermal stability [103]. Chitosan microspheres and phytic acid with
core-shell structure have been developed and employed as additives for PLA composites,
which improved flame retardancy, mechanical properties, UV resistance, and degradation
capacity in soil. To explain the accelerated degradation, the authors proposed that the water
is easy to gravitate and attack the chain of PLA, and both the additive and water assisted
the microbial reproduction, and these processes simultaneously erode the film [96]. In other
work, Chang et al. prepared chitosan/PLA plastic films by extrusion and demonstrated
that covering fish fillet with a 0.5% chitosan–PLA film reduced the number of several
microbes (e.g., mesophiles, psychrophiles, coliforms, Pseudomonas, Aeromonas, and Vibrio)
and the total volatile basic nitrogen value in the grouper fillets, when stored at 4 ◦C [104].
Similarly, composite films from nanochitosan in PLA matrix, using polyethylene glycol as
a cross-linking agent and polyvinyl alcohol as a plasticizer, were found to be useful for the
packaging of fresh prawn as it extended its shelf life. In this case, the quality parameters
of the product were acceptable until 15 days of storage wherein the use of chitosan (1%)
effectively reduced the microbial growth. Furthermore, the author indicated that both the
film thickness and the chitosan incorporation influenced the permeability of the film [105].
Tan et al. developed biodegradable plastics from chitosan-reinforced starch-based films;
they investigated the effects of processing parameters, such as the polymer concentration,
glycerol loading, and temperature, on mechanical properties. As a result, a tensile strength
of 5.19 MPa and elongation at break of 44.6% were attained using reaction conditions in-
volving 5 wt.% starch, 40 wt.% glycerol, and 20 wt.% chitosan at 70 ◦C. Chitosan-reinforced
films had a lower water uptake capability, as compared with pure starch-based films; fur-
thermore, pure starch-based and chitosan-reinforced films are subjected to applications
below 316 ◦C and 290 ◦C, respectively. Additionally, a biodegradation test was conducted
in compost soil, obtaining that the bioplastic containing chitosan underwent slower degra-
dation which might be due to the starch-chitosan interaction and the reduced hydrophilicity
(Figure 6) [18]. Researchers have also demonstrated that chitosan can be uniformly inte-
grated into polyethylene terephthalate (PET), a typical packaging material for disposable
soft drink bottles, through the extrusion process. The best performance in miscibility and
degradation was reached with a mixture 95/5 (PET/chitosan) in weight ratio [106].
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The incorporation of chitosan into plastic materials modifies characteristics like UV
resistance, transparency, and antimicrobial activity, among others. Moreover, the resulting
plastic is more easily degraded; nevertheless, these biodegradable materials are often not
as biodegradable as required. It is unlikely to find a unique solution in terms of designing
a single polymer, which degrades easily in a wide variety of ecosystems.

5. Agriculture: The Role of Chitosan in Plant Growth

One of the goals of sustainable development is to ensure food for all people worldwide.
Thus, it is necessary to improve food and agriculture systems. In this regard, chitosan
has been registered with EPA (US Environmental Protection Agency) as a fungicidal and
antimicrobial agent, as well as a plant growth regulator (PGR) within the minimum risk
pesticide list [107]. The advantage of chitosan appreciated by farmers is its contribution
to promoting plant growth, eliciting plant resistance against biotic and abiotic stress,
and activating symbiotic signaling between plants and beneficial microorganisms [108].
Chitosan and its fragments have been shown to act as defense elicitors for diseases, mainly
fungal infections, as they are recognized by the plant as stress signals. For instance, plants
increase hormones and phenolics production when chitosan is applied to plants’ roots [109].
Foliar spraying of chitosan solutions also impacts the infection by fungal pathogens; as an
example, it has been reported that Botrytis cinerea infection is affected by the increase of
plant resistance when chitosan is applied. This effect is related to callose deposition and
accumulation of jasmonic acid (JA) in leaf tissues [110]. Chitosan has also been studied as a
growth promotor. Studies on ornamental plants like Dendrobium orchids indicated that this
polysaccharide increases floral production by affecting chloroplast gene expression [111].
For that, its oligosaccharides of low molecular weight chains are recognized to be more
active [112]. When applied to baby leaf red perilla (a culinary vegetable), chitosan promoted
plant height, fresh weight, and antioxidant levels, acting as a biostimulant for plant growth
and quality [113]. For the in vitro germination of plants, the supplementation of media
with plant growth regulators is used to stimulate seed germination and organ development.
Studies have shown that chitosan and its oligomers can be used as alternatives to the
commonly used plant growth regulators including auxins and cytokinins [15]. In this
regard, germination studies conducted on orchids confirmed that chitosan acts as an
in vitro growth stimulator for meristemic tissues, accelerating protocorm formation up
to 15 times compared to control plants, and demonstrating the relationship between the
polymer molecular weight and its effectiveness [112]. Chitosan nanoparticles obtained with
TPP have also been studied as elicitors for germination but these have shown a phytotoxic
effect at lower concentrations (5–20 mg L−1) than the bulk chitosan (100 mg L−1), causing a
dramatic growth cessation. Bulk chitosan achieved higher antioxidant levels; nevertheless,
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the nano-chitosan was the most effective elicitor for organogenesis [114]. Similarly, the
results of chitosan microparticles supplementation improved the promotion of the foliar
area and root and shoot biomass than bulk chitosan in tomato seeds [115]. Chitosan
oligomers can enhance the activity of enzymes involved in primary (e.g., nitrate reductase,
ribulose-1,5-bisphosphate carboxylase/oxygenase, and carbonic anhydrase – all of these
are involved in photosynthesis) and secondary (e.g., phenylalanine ammonia lyase and L-
tryptophan decarboxylase, for phenolics and alkaloid biosynthesis, respectively) metabolic
pathways [116,117]. The secondary metabolites “terpenes” are economically attractive for
their curative and industrial uses, and their production in plants also increases with the
application of chitosan [116]. This metabolic response to chitosan has been related to the
miRNA and mRNA expression in plants [118]. In the same way, the authors studied the
foliar application of a mixture of semisynthetic chitosan derivatives to induce tolerance to
water deficit (for 15 days) in maize, finding that the mixture of derivatives increased the
content of phenolic compounds and the activity of enzymes involved in their production,
increasing dehydroascorbate reductase, total soluble sugars, total amino acids, starch, grain
yield, and harvest index [119].

In this topic, materials from chitosan can also be tailored for encapsulation and slow
release of plant growth regulators (e.g., pesticides and fertilizers), being a polymeric matrix
that provides different benefits, such as protection of guest compounds from adverse envi-
ronmental conditions (pH, light, temperatures) and protection of plant cells from hazardous
effects thus avoiding a burst release of active ingredients [120]. For instance, Feng et al.
studied coumarin-containing light-responsive carboxymethyl chitosan nanocarriers for
controlled release of pesticides (see Figure 7), and found good bioactivity on the target plant
(cucumber) with no impact on the non-target plant (wheat) using 2,4-dichlorophenoxyacetic
acid as model pesticide [23]. Based on the abovementioned, chitosan application in crops,
medicinal, and ornamental plants influences plant defense and plant growth by inducing
enzymatic genes for primary and secondary metabolism, and it is a promising way for
increasing the yield of economically valuable secondary products.
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water (i), free pesticide (ii), and pesticide-loaded micelles (iii). Adapted from a previously reported
work [23].

An interesting recent approach is genetic engineering using nanochitosan for a sus-
tainable increase in crop productivity. Results showed that nanochitosan enhanced anti-
pathogenic and plant growth-promoting activity. Nanochitosans are also promising mate-
rials in agriculture for the controlled release of pesticides, nutrients, fertilizers, and plant
hormones [121,122].
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6. Textile Industry: Development of (Cosmeto-)Textiles Containing Chitosan

The demand for textile goods with antimicrobial activity is continuously growing,
and a number of chemicals are used to fulfill this task; nevertheless, the change from
toxic to non-toxic chemicals, producing eco-friendly materials, is preferred. For instance,
medical staff, law enforcement officers, and firefighters, among other occupations, should
be correctly protected from biological agents to avoid the propagation of infectious mi-
croorganisms [123]. In this sense, chitosan is a versatile polymer with broad applications
in the textile industry [1]. The main characteristics of chitosan appreciated by textile
industrialists are its biodegradability, antistatic activity, chelating property, deodorizing
property, ability to form films, chemical reactivity and encapsulating capability, ability to
control the strength and rigidity of fibers and dyeing, thickening properties, and its ability
to heal wounds, the latter being of interest in the biomedical field (surgical threads and
sanitary fibrous products) [124,125]. Specifically, chitosan can be used to concede excellent
properties like antimicrobial activity to commercial textiles; this power against several
bacteria and fungi is due to its polycationic nature [126]. Authors have performed textile
physical tests of chitosan-based fibers, comparing the maximum tensile force and maximum
knot breaking strength after a knot formation for the fibers from chitosan and ionic liquid
1-butyl-3-methylimidazolium acetate (see Figure 8), where both parameters were adjusted
by controlling the chitosan content [127]. Furthermore, cotton and wool textiles pretreated
with chitosan present good affinity to anionic dyes, high dye uptake, and color strength
due to the high proportion of amino group on chitosan, which provided more adsorption
sites for anionic dyes through van der Waals forces and electrostatic attraction [128]. This
property of chitosan is highly relevant in two different aspects; first, the amount of dye
required in the process is less, and therefore, it is more economically viable; second, the dye
deposited into the environment is reduced. When dyes are released into the environment,
they can generate lethal wastes, and also, they are extremely mutagenic and carcinogenic.
Besides, their perseverance endangers productive agricultural land and aquatic life, and
even a small dye concentration adversely affects gas solubility and the transparency of
water [22]. Chitosan is incorporated in textile products as fiber after undergoing a series of
processes. However, the fibers have some limitations related to poor mechanical properties,
high electrostatic charge, and high cost [129]. To overcome these limitations and enhance
the performance of the manufactured yarns, distinct approaches have been addressed
during its synthesis, such as the blending ratio of chitosan with a second material, blending
methods, the solvent used, and others [130]. During textile production, a sizing agent
is needed to protect against breaking the fibers and filament yarns in the weaving ma-
chine; for that, chitosan has been proposed as a highly compatible alternative to synthetic
sizing agents. The economic and ecological advantages of applying chitosan in sizing
were demonstrated with the weaving efficiency increase (based on the reduction in yarn
breakage), reduction in wastewater (from the use of less sizing agent), and eco-friendly
textile production (from substances which are easily biodegradable) [131].

In this topic, hydrogels from sodium alginate and chitosan formed on textile nonwo-
vens (textile-hydrogel hybrids) were designed for use in mild-to-moderate exudate wounds
(e.g., ulcers and burns): for that, formulations with the lower hardness, compressibility, and
adhesiveness were selected to be applied to textile nonwovens [132]. Grgac et al. reported
that chitosan particles are well implemented in the cotton and polyester/cotton blend
fabrics, where the antimicrobial activity after five washing cycles was persistent [133]. The
shrinkage-proof property of wool substrate modified with chitosan-poly(propylene imine)
dendrimer hybrid has also been addressed, where the shrinkage of the untreated fabrics was
larger in both directions (warp and weft), as compared to chitosan-poly(propylene imine)
treated fabrics. This behavior was attributed to the fact that fibers containing chitosan
would become stronger to external forces and not slip over each other, thus becoming more
shrink-proof [134]. In other work, a water-soluble chitosan derivative, O-acrylamidomethyl-
N-[(2-hydroxy-3-dimethyldodecylammonium) propyl], was synthesized and applied to
cotton samples. The treated cotton fabrics were able to maintain antimicrobial properties
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against Escherichia coli even after 30 home launderings. Furthermore, salt-free reactive
dyeing of the treated fabric showed good dyeing properties and washing fastness [135].
Researchers have also tested chitosan microcapsules containing an antifungal agent (clotri-
mazole) with potential applications onto socks or bandages as a treatment for athlete’s foot;
the performance of these microcapsules was evident after studying the in vitro inhibition
of Trichophyton rubrum growth and cytotoxicity (in skin cell lines). The authors suggested
that the system could continuously release antifungal agents in a controlled manner under
pressure [136]. Other chitosan microcapsules loaded with miconazole nitrate (encapsula-
tion efficiency = 77.6–96.8%) have been successfully prepared, releasing around 50% of the
drug after 12 h under conditions that mimic human skin. The authors proposed that the
formulation could be applied onto bandages or socks [137].
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As demonstrated by the studies mentioned earlier, Chitosan is a promising polymer
in the development of (cosmeto-)textiles due to its versatility. Nonetheless, there are still
some challenges that need to be tackled with the aim of considering chitosan for textile
production at an industrial scale. In addition, for cosmetotextiles, it is important to conduct
scientific studies in order to promote the use of chitosan on the basis of proven results and
not only attributed to fashionable effects. A commercial example is anti-cellulite slimming
leggings, which allow slimming without or almost without effort.

7. Synthesis Processes: Chitosan in Catalytic Scaffolds

Catalysis is a technology developed to increase the rate of chemical reactions and/or
establish mild reaction conditions using catalysts. Ninety-five percent of chemicals in the
industry come from catalytic processes [138]. In this field, heterogeneous catalysis offers
advantages over its counterpart (homogeneous), such as easier separation of catalyst from
the reaction mixture, reusability, good stability, and low toxicity of catalyst, among other
factors [139]. Regarding solid catalysts, the supported ones are the most commonly used,
and they are typically formed by nanometric particles of at least a metal that is dispersed
on the support’s surface [140,141]. In this topic, chitosan is an attractive material to be used
as support in supported catalysts. The presence of amino and hydroxyl groups onto the
polymer chain provides a number of structural modifications that can improve thermal and
mechanical properties [142]. Besides, chitosan functional groups represent possible binding
sites that could strongly interact with metal ions and metal nanoparticles [31,143], which is
a key requirement for a catalyst support. Recently, the excellent properties of TiO2 as a pho-
tocatalyst for the degradation of different organic compounds in an aqueous medium have
been reported, but one of the challenges for its technical implementation is the difficulty in
its separation from water. Therefore, to address this challenge, Bergamonti et al. employed
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a 3D-printed chitosan scaffold as a support for TiO2 and obtained an active photocatalyst
for amoxicillin degradation. The size of the TiO2 nanocrystals (approximately 20 nm for
the anatase phase and 25 nm for the rutile phase) was not affected by its immobilization
within the 3D chitosan scaffold [144]. Furthermore, chitosan-based scaffolds supporting
metal nanoparticles have been claimed to be active for catalytic reduction in pollutants; for
that, Pt and Pd nanoparticles were in situ formed into walls of 3D-macroporous scaffolds
(cryogels), resulting in materials catalytically active to 4-nitrophenol reduction [31]. Thus,
3D-chitosan scaffolds seem to be suitable versatile supports for catalytic/photocatalytic
applications. Another interesting catalytic topic involves the conversion of biomass to
high-value chemicals or fuels, where lignin, cellulose, and hemicelluloses are the three
major components of lignocellulosic biomass. Recently, photocatalysis has emerged as a
promising method for that purpose [145], and it has been reported that chitosan-based
catalysts are efficient photocatalysts. Li et al. reported a feasible path for lactic acid produc-
tion via photocatalytic reformation of biomass, promoted by an alkaline chitosan hydrogel
hybridized with CuO [146]; these authors attributed the efficiency to the CuO ability for
visible-light adsorption (CuO band gap is ca. 1.7), and to the improved stability of CuO
provided by chitosan; additionally, the visible-light adsorption of CuO was not affected
after hybridization with chitosan. Other catalytic processes also require improved ther-
mal stability and mechanical properties of chitosan to be used as support. That can be
performed by cross-linking and bonding chitosan with other macromolecular chains [142].
For instance, Rostami et al. designed and synthesized a thermally stable network by cross-
linking chitosan and cellulose using EDTA, Cs-EDTA-Cell [147]. The authors tested the
chitosan-based network as a catalyst for the synthesis of 2-amino-4H-pyran derivatives at
room temperature; they found that catalysts promoted high yields of the desired products
in short reaction times. 2-amino-4H-pyran is one of the most biologically active scaffolds in
medicinal chemistry, with potential pharmaceutical applications as anticancer, anti-HIV,
anti-inflammatory, etc. On the other hand, the hydrogenation of CO2 to hydrocarbons has
been widely investigated [148,149]. As catalytic CO2 hydrogenation demands moderate to
severe reaction conditions, pure chitosan cannot be used as a support. However, the ability
of chitosan to stabilize metal ions and metal nanoparticles is strongly beneficial to the green
synthesis of catalytic materials for that purpose. Witoon et al. reported the important role
of chitosan in the physicochemical properties and catalytic activity of Cu/ZnO for CO2
hydrogenation to methanol (a fuel) [150]. The authors employed chitosan as a precipitating
agent during the co-precipitation of CuO and ZnO, finding that chitosan acted as a soft
template for the formation of hollow nanospheres.

Chitosan also plays a very important role in catalysis as a green solvent or green
electrolyte. It generates green solvents, increasing the surface exchange capabilities and
utilization of ionic liquids, contributing to the implementation of green chemistry princi-
ples by minimizing the amount of required products and the utilization of renewable raw
materials. These solvents open up new fields of non-aqueous biocatalysis and biotechnol-
ogy (enzymology).

To conclude, it is clear that some of the main challenges to society involve global
food supply, global warming, environmental pollution, production, and use of clean and
renewable fuel and chemical platforms. Catalysis is deeply related to all these topics.
Based on its physicochemical properties, abundance, and low toxicity and cost, chitosan
represents a potentially sustainable and versatile material for catalytic applications.

8. Water Treatment Using Chitosan: Flocculation

Water treatment/remediation is an issue of great interest to ensure the water supply
for future generations. In recent years, the increase in contamination of natural water
reservoirs (e.g., rivers and lakes) has been exposed [151]. As is well known, water treatment
plants are inefficient in removing certain substances such as metals, drugs, dyes, plastics,
and pesticides because they were not designed to remove these pollutants [152,153]. Fur-
thermore, the inappropriate management of effluents triggers freshwater contamination
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resulting in an ecological disturbance and representing a public health risk [154,155]. There-
fore, it is essential to improve the processes involved in the treatment trains. Chitosan, a
low-cost and versatile biopolymer, can be used for environmental applications, including
water and wastewater treatment (biocoagulation, bioflocculation, and biosorption), mem-
brane filtration (polymer-assisted ultrafiltration), sludge dewatering, and odor reduction.
Among them, flocculation deserves particular attention; for example, for the removal of
pollutants present in water from aquaculture [156]. The flocculation process is widely
used at the industrial scale, where eco-friendly flocculants such as chitosan with high
effectiveness, manufactured from renewable sources, and ease of use are desired [157].
It is relevant to highlight that unmodified chitosan has presented a higher performance
potential than poly(aluminum chloride) (PAC) when pH regulation and the removal of
heavy metal ions from wastewater were studied, which could be attributed to the great
effectiveness of this aminopolysaccharide in the removal of dissolved/dispersed organic
matter (combining coagulation and flocculation), in addition to its high chelating abil-
ity [158]. Moreover, turbidity reduction using samples from rivers and wastewater has
been quite comparative for both flocculants, obtaining bigger and more compact floc with
chitosan (see Figure 9); further, in the case of metal ion removal, chitosan has shown more
affinity to certain metals. However, an optimal dose (e.g., from 0.5 to 15 mg L−1) is usually
required [16,158]. The simultaneous addition of PAC and chitosan to low turbid water
resulted in efficient turbidity removal of 87%, indicating a synergistic effect between the
two polymers [159]. The use of modified chitosan, such as chitosan-based graft copolymers,
can result in water-soluble materials that exhibit a wider flocculation window, a range of
concentrations yielding high effectiveness, and higher flocculation performance toward the
removal of turbidity, small molecules, and heavy metal ions [160]. For instance, chitosan-
based graft copolymers have also been proposed as good alternatives to replace commercial
adsorbents for the removal of textile dyes [128]. With graft copolymers, the flocculation
performance and floc characteristics are controlled using an appropriate number of chains
grafted onto the chitosan backbone, that is, by adjusting the chemical composition [161].
Furthermore, the modified chitosan provides a synergistic effect with FeCl3 yielding higher
turbidity and orthophosphate removal (>93%) with greater efficiency over unmodified
chitosan [13]; for microplastic (polystyrene), the system tannic acid–chitosan conjugates
and FeCl3 has shown higher removal efficiency (84%) aided by metal-polymer coordination
bonds, as compared to single chitosan (54%) and tannic acid–chitosan (52%) in absence
of Fe3+ [162]. On the other hand, the pH strongly affects the flocculation process when
polymers susceptible to protonation and deprotonation are used. Therefore, the removal
of turbidity and organic pollutants using chitosan-based flocculants is sensitive to the pH
of the medium. From experiments using a river water matrix with different pH levels,
the maximum flocculation efficiency using chitosan was reached at pH 7 [163]. Similarly,
using chitosan-graft-(N-vinylcaprolactam-acrylic acid) for ciprofloxacin removal at pH 4,
7, and 9, a lower efficiency was registered at pH 4, because the polymer and drug were
protonated, and this resulted in repulsive forces. At the same time, the higher entrapment
was attained at pH 7, and that level was close to the isoelectric point of the flocculant
and the lower drug solubility; therefore, the higher performance was related to additional
interactions by hydrogen bonds among the polymer and drug molecules [164]. Thus, for
water samples having pH values from 6.5 to 8, electrostatic interactions between chitosan
(isoelectric point within the pH range 7–8) and contaminants are limited [158]. Regarding
the temperature, it has been demonstrated that the antibiotic removal from wastewater
can be improved by grafting thermoresponsive side chains onto chitosan, given that the
hydrophilic/hydrophobic balance is changed when the temperature rises to values higher
than the lower critical solution temperature of the flocculants [160,164]. Due to their nature,
chitosan-based flocculants trigger a separation process that is mainly driven by charge
neutralization (interaction with oppositely charged substances) and bridging (flocculant-
contaminant adsorption forming complex aggregates) mechanisms [157]. In addition to
other advantages in the flocculation process, these graft copolymers offer excellent sludge
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dewatering (improved sediment consolidation) [165]; these things considered, when this
type of flocculants have been regenerated, they have resulted in reusable materials which
maintain high flocculation efficiency [160]. For their application on an industrial scale, the
process using chitosan and its derivatives could be performed in the same infrastructure
of treatment plants as for PAC, given that their dosage can also be carried out in a liquid
formulation. Eventually, a chitosan-PAC mixture could be a feasible option in terms of its
effectiveness, availability, and cost of materials.
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Regarding the performance in other treatment methods, chitosan-based membranes
have been designed for small substances entrapment via filtration, and in specific trials up
to 81.21% of dye rejection (reactive black 5) and 78% of heavy metals removal (manganese)
has been reached [166]. Hence, it is clear that this polysaccharide can help in the production
of drinking water and water remediation by different strategies.

As a summary of the topics studied in this review, Table 1 shows additional examples
of results obtained using chitosan-based materials for bacterial growth inhibition, drug and
phytochemical encapsulation, edible coatings and food packaging, foliar application and
pesticide encapsulation, fabrication of textiles, catalytic systems, and water treatment.

Table 1. Summary of representative results obtained with chitosan-based materials in different
applications.

Material/System Purpose Result Ref.

Chitosan-silver nanoparticles
(Ch-AgNPs)

Bacterial growth inhibition in
food

Escherichia coli was more susceptible to Ch-AgNPs
than Salmonella typhimurium. In vivo antibacterial
activity against Escherichia coli revealed excellent
activity compared with single chitosan

[167]

Hollow nanoparticles from
chitosan and alginate Bacterial growth inhibition

Flexible capsules inhibited microbial growth more
strongly than rigid particles. The inhibitory effect
was from 18.6% to 34.9% for Staphylococcus aureus
and from 23.7% to 40% for Escherichia coli

[168]

Conventional
liposomes-triamcinolone

acetonide
coated with chitosan

Topical drug delivery system

High encapsulation efficiency (74%), suitable
particle size of 176 nm, high positive surface charge
(+41.1 mV, high stability), increased retention time,
and maximum drug release of around 73%

[169]
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Table 1. Cont.

Material/System Purpose Result Ref.

Chitosan-gellan nanocapsules
containing tamoxifen citrate

Drug encapsulation for breast
cancer therapy

Spherical shape with particle size = 242 nm and zeta
potential = 39 mV (value usually associated with
high stability), providing sustained drug release and
increased cytotoxicity against breast cancer cells
(∼90%)

[170]

Chitosan nanoparticles
containing Physalis alkekengi-L

extract

Phytochemicals encapsulation:
antioxidant compounds

Suitable particle size = 196 nm, zeta potential around
8 mV, and high percentage of encapsulated extract,
close to 95%; resulting in improved stability and
antioxidant activity of the P. alkekengi-L extract

[171]

Succinyl-chitosan
nanoparticles

Phytochemicals encapsulation:
antioxidant compounds

Encapsulation efficiency of 88%, 65%, and 27% for
gallic acid, epigallocatechin-3-gallate, and propyl
gallate, respectively. Encapsulation process
governed by both the ability to form hydrogen
bonds and the size of the guest molecules

[172]

Liposomal chitosan emulsions
containing thyme essential oil

Phytochemicals encapsulation
in edible coating

Emulsions were stable over 2 months at 4 ◦C. The
Karish cheese preserved with the edible coating
showed antimicrobial activity over 4 weeks, thus the
shelf life of the product was extended

[173]

Chitosan-thyme essential oil
films

Film containing in food
packaging

Excellent antifungal activity against Clonostachys
rosea. Conservation of fruit firmness, nutritional
composition, and nutraceutical content, resulting in
improved shelf life of Hass avocadoes

[174]

Corn starch–chitosan Biodegradable film as
packaging for food

Chitosan interacts effectively with starch, improving
tensile strength, thermal stability, hydrophobicity,
water adsorption capacity, and the gas barrier of
starch films

[175]

Cross-linked
chitosan/soybean protein
isolate/polyvinyl alcohol

Hybrid plastic for packaging

Excellent compatibility of chitosan and soybean
protein reducing the plastic surface roughness and
enhancing mechanical properties, yielding superior
water resistance compared to pure PVA. Hybrid
plastic with desirable degradability

[176]

Chitosan Foliar application

Reduced adverse effects of limited irrigation on
essential oil yield, improved essential oil content,
and positive influence on the amount of secondary
metabolites. The antioxidant activity of sage (Salvia
officinalis L.) was increased

[177]

Chitosan-tripolyphosphate
nanoparticles containing
nicotine hydrochloride

Insecticide encapsulation

Encapsulation efficiency of 55%, physicochemical
stability (45 days) with particle size around 300 nm,
and zeta potential close to 50 mV. Less than 20% of
the insecticide was released within 24 h. The 24 h
mortality of the formulation was 95% (against Musca
domestica)

[178]

Chitosan-spinosad
formulation Insecticide encapsulation

High encapsulation efficiency (60%). Long
sustained-release time (>18 days) and high
cumulative release (>80%). Outstanding UV
shielding ability of chitosan protecting spinosad
from photodegradation

[3]

Emulsions from chitosan and
alpha-tocopherol

Impregnation of cellulosic
fabric for cosmetotextiles

Treated fabric with a slight decrease in absorbency
and tensile strength, and good antibacterial (against
Escherichia coli and Staphylococcus aureus) and
antioxidant activities (36.78 unit g−1)

[179]
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Table 1. Cont.

Material/System Purpose Result Ref.

Nanocomposites based on
chitosan/silver/clay Treatment for cotton fabrics

Uniform morphology, high strength, flame retardant,
high water absorption, high antimicrobial activity
(against Escherichia coli and Staphylococcus aureus,
>98%), controlled release of Lavender oil (odor
retention even after 3 months), and UV protection

[180]

Scaffolds (imidazolium-
vanillyl-chitosan Schiff bases

(IVCSSBs)) for supporting
Pd(II)

Catalytic systems

Heterogeneous catalyst with high catalytic activity
(up to 99%) and stability in the reaction medium.
Reusable materials with comparable catalytic
activity after five operation runs. Excellent
selectivity toward the Suzuki cross-coupling reaction

[181]

Cross-linked carboxyl-grafted
chitosan derivatives Wastewater treatment

Higher diclofenac removal (92.8%) using chitosan
grafted with trans-aconitic acid, compared to
succinic anhydride (80.9%) and maleic anhydride
(66.2%) as grafting agents. Higher removal for
diclofenac from a mixture with salicylic acid,
ibuprofen, and ketoprofen

[182]

A recent comprehensive book on the applications of chitin and chitosan for environ-
mental purposes has been published by Crini [183]. This book assesses their applications
in water and wastewater treatment for sustainable solutions, and the future chitin and
chitosan usage as an organic solution for a more sustainable, green, and healthy planet.

9. Conclusions

For the potential applications reviewed, the effectiveness of chitosan has been clearly
demonstrated. Polymer molecular weight and degree of deacetylation, and in some cases its
concentration, play a key role in influencing the effectiveness of this biocompatible polymer
for different purposes. In some cases, the modification of the polysaccharide yields a
remarkable increase in efficiency; these things considered, chitosan can be used either as
the main component or as an adjuvant along with other materials. The hydroxyl and amino
groups, as well as chemical modifications on the chitosan backbone, promote suitable
binding with small molecules, ions, macromolecules, cell membranes/walls, and metal
surfaces through electrostatic interactions, hydrogen bonding, hydrophobic interactions,
and chelation. For some applications, there are no additional requirements for chitosan,
but the challenge might be to ensure the global demand on an industrial scale where
large volumes would be continuously required. In other cases, it is necessary to continue
studying the components (substances) that achieve a better synergistic effect with chitosan,
resulting in a better system. From a global perspective, chitosan could become a common
chain connecting human health and environmental protection with a proper lifestyle.
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