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Abstract: In the state of Sinaloa, rainfall presents considerable irregularities, and the climate is
mainly semiarid, which highlights the importance of studying the sensitivity of various indices of
meteorological drought. The goal is to evaluate the sensitivity of four indices of meteorological
drought from five weather stations in Sinaloa for the prediction of rainfed maize yield. Using
DrinC software and data from the period 1982–2013, the following were calculated: the standardized
precipitation index (SPI), agricultural standardized precipitation index (aSPI), reconnaissance drought
index (RDI) and effective reconnaissance drought index (eRDI). The observed rainfed maize yield
(RMYob) was obtained online, through free access from the database of the Agrifood and Fisheries
Information Service of the government of Mexico. Sensitivities between the drought indices and
RMYob were estimated using Pearson and Spearman correlations. Predictive models of rainfed maize
yield (RMYpr) were calculated using multiple linear and nonlinear regressions. In the models, aSPI
and eRDI with reference periods and time steps of one month (January), two months (December–
January) and three months (November–January), were the most sensitive. The correlation coefficients
between RMYob and RMYpr ranged from 0.423 to 0.706, all being significantly different from zero.
This study provides new models for the early calculation of RMYpr. Through appropriate planning
of the planting–harvesting cycle of dryland maize, substantial socioeconomic damage can be avoided
in one of the most important agricultural regions of Mexico.

Keywords: multiple linear regression; multiple nonlinear regression; socioeconomic damage

1. Introduction

One of the natural phenomena that causes the most socio-environmental damage
worldwide is meteorological drought (MD) [1]. This drought results mainly from irregular
precipitation (P) [2,3] and high potential evapotranspiration (PET) [4].

These two climate variables can reduce the yield of rainfed agricultural crops in any
region of the world [3], causing damage to crops and serious economic losses [5,6]. Mexico
is no exception [5], due in part to the fact that although the state of Sinaloa is considered
“the breadbasket of Mexico,” it has also recently registered a substantial irregularity in
P. This irregularity inevitably makes the socioeconomic condition vulnerable [7,8] due to
low agricultural yields [9], and according to [10], especially the observed rainfed maize
yield (RMYob). The rainfed corn crop in Sinaloa is particularly important because the area
planted with this crop currently exceeds the area planted with irrigated corn. In addition,
corn is in first place among the eight basic crops of the state [9], and the crop is the most
seriously affected by irregular P and high temperatures [11,12].
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Usually, these low RMYob are associated with only a single index of MD; that is,
most research does not choose the most sensitive drought index, which calls into question
whether the yield prediction (RMYpr) is satisfactory [12–14].

Although most predictions are made with linear approximations, it is important to
consider that many phenomena in nature do not behave linearly [15]. Due to this [16],
recommends that more research worldwide should employ nonlinear tools, such as multiple
nonlinear regression (MNR), which according to [17,18] in many cases yields more accurate
predictions than multiple linear regression (MLR).

To establish suitable models of RMYpr for Sinaloa, it is vital to assess sensitivity by
calculating correlations between RMYob and various MD indices with different reference
periods and early time steps [11,19,20].

Worldwide, four of the most widely used indices of MD are (1) standardized precipi-
tation index (SPI), formulated by [21], which is based only on total P as input data. The
authors of [22] therefore tried to increase the sensitivity [23] of the SPI by designing the
(2) agricultural standardized precipitation index (aSPI), which considers only the P used by
crops [24]. (3) The reconnaissance drought index (RDI), created by [25] and applied by [26],
and (4) the effective reconnaissance drought index (eRDI), formulated by [27] and applied
by [28], try to express severe drought phenomena not only with knowledge of P but also of
potential PET.

The importance of the use of these four MD indices lies mainly in their widespread
use around the world due to their simple structure, ease of use and efficiency of the
results [22,29,30]. For example, [29] successfully applied the SPI in the semi-arid region
of the Merguellil Basin in central Tunisia, managing to spatially and temporally map the
extreme drought for the period 1983–2018. In the case of the aSPI index, [22] applied it
successfully in four semi-arid areas (north-east, north, center and south) of Greece, finding
that this index is more robust than the SPI, mainly in the identification of agricultural
droughts. The four indices (SPI, aSPI, RDI and eRDI) were used jointly by [30], who applied
them in Saudi Arabia (a region with a semi-arid–arid climate), for the period 1985–2020,
and found a robust relationship between meteorological droughts and the Pacific decadal
oscillation, which indicates a property of predictability of these dry phenomena.

In this study, for five municipalities and for the period 1982–2013, RMYob was obtained
online from the database of the Agrifood and Fisheries Information Service of the govern-
ment of Mexico (SIAP). Using DrinC software and information from five meteorological
stations, four indices of MD were calculated: SPI, aSPI, RDI and eRDI. To propose models
sensitive to MD in Sinaloa, Pearson and Spearman correlations were applied between the
four indices of MD and RMYob. To obtain the RMYpr, MLR and MNR were applied between
the indices of MD (with the highest significant correlation) and RMYob. To find out if the
RMYpr values were significantly different from zero, Pearson and Spearman correlations
and a hypothesis test were applied between RMYob and RMYpr.

The goal was to evaluate the sensitivity of the four indices of MD for the calculation of
RMYpr from five meteorological stations in Sinaloa.

This study provides new models (based on four indices of MD widely used around
the world) for the early calculation of RMYpr, which can help avert environmental damage
and considerable socioeconomic losses [31] in one of the Mexican states that produces the
most rainfed maize [9,32].

2. Materials and Methods
2.1. Study Area

The study area was located in northwestern Mexico (Figure 1), specifically in the central-
southern part of the state of Sinaloa. Data from five meteorological stations in this region
were used; Culiacán, La Concha, Las Tortugas, Rosario and Sta. Cruz de A., located in the
municipalities of Culiacán, Escuinapa, Concordia, Rosario and Cosalá, respectively. The state
of Sinaloa has a high volume of agricultural activity, so much so that it is often called “the
breadbasket of Mexico” [33]. The largest proportion of Sinaloa has a climate ranging in a
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north–south direction from arid to semi-arid, and in some southern municipalities, a climate
that becomes warm sub-humid [34]. Approximately 70% of the total annual P falls in the
summer (June–September) [35]. For the study area, the following are the annual values for the
period 1982–2013 of the average (avg.), standard deviation (SD), variance (Va) and coefficient of
variation (C.V.) for P (avg. = 860.96 mm, SD = 132.49 mm, Va = 17552.36 mm2 and C.V. = 15%),
Tmax (avg. = 32.98 mm, SD = 0.40 mm, Va = 0.16 mm2 and C.V. = 1%), Tmin (avg. = 17.97
mm, SD = 0.97 mm, Va = 0.94 mm2 and C.V. = 5%), PET (avg. = 1881.61 mm, SD = 59.70 mm,
Va = 3563.85 mm2 and C.V. = 3%) and A.I. (avg. = 0.46, SD = 0.08, Va = 0.01 and C.V. = 17%).
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Figure 1. Study area, located in northwestern Mexico.

2.2. Data
2.2.1. Precipitation (P), Maximum Temperature (Tmax) and Minimum Temperature (Tmin)

Data from 70 weather stations in the state of Sinaloa were downloaded from the CLImate
COMputing (CLICOM) database [36] (http://clicomex.cicese.mx, accessed on 31 December
2021) and analyzed. These weather stations were selected for the following characteristics:
(1) daily availability of the data series (P, Tmax and Tmin) >95% [37], (2) data ≥30 years [20]
and (3) annual data of RMYob = 100%. The missing P, Tmax and Tmin data were estimated
by means of a simple imputation method (nearest neighbor), as [38,39] note that when the
percentage of missing data < 5, any imputation method works well. After data quality analysis,
it was decided that the study period would be 1982–2013. P, Tmax and Tmin data were ordered
from October to September, because this is the format accepted by the DrinC software.

2.2.2. Observed Rainfed Corn Yield (RMYob)

The RMYob values were obtained from the database of the Agrifood and Fisheries
Information Service of the government of Mexico, at the website [40] http://infosiap.
siap.gob.mx/aagricola_siap_gb/ientidad/index.jsp, accessed on 3 January 2022. In this
database, only for the period 1982–2002 was the variation not recorded by municipality, so
in this study, and only for this period (1982–2002), the variation of RMYob was the same
for the five municipalities. Sowing and harvesting of rainfed maize in Sinaloa are usually
carried out up to 31 July and 31 January, respectively [9,32].

http://clicomex.cicese.mx
http://infosiap.siap.gob.mx/aagricola_siap_gb/ientidad/index.jsp
http://infosiap.siap.gob.mx/aagricola_siap_gb/ientidad/index.jsp
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2.3. Mathematical Expressions on Which the Indices of Meteorological Drought (MD) Are Based
2.3.1. Standardized Precipitation Index (SPI)

For the SPI index, only P is required as input for various time scales (1–24 months). In
this index, the series are fit to the gamma probability distribution (shown in Equation (1)),
to then convert this distribution to the standard normal probability distribution [21]; that
is, the average SPI will have a null value [14].

g(x) =
1

βαΓ(α)
xα−1e

−x
β , for x > 0 (1)

where α and β are the shape and scale parameters, respectively (calculated for each weather
station and time scale in months). Γ(α) is the gamma function and x is P. The maximum
likelihood functions for α and β are given by Equations (2) and (3):

α =
1

4A

(
1 +

√
1 +

4A
3

)
(2)

β =
¯
x
α

, (3)

where A = ln
(

¯
x
)
−∑ln(x)

n
(4)

In Equation (4), n is the number of observations. As Γ(α) is not defined for x = 0
and since the values of a series of P can be zero, the probability is the expression given in
Equation (5):

H(x) = q + (1−q)·G(x) (5)

where q is the probability of the absence of P and G(x) is the incomplete cumulative
probability of Γ(α). If m is the number of nulls in a series of P, then q can be estimated as
m/n. H(x) is the standard normal random variable z, with avg. = zero and Va = 1 [14].

2.3.2. Agricultural Standardized Precipitation Index (aSPI)

For the aSPI, the cumulative probability distribution is transformed into a normal
distribution through the approximation of Equation (6) [21,22]:

aSPI = −
(

t− c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, 0 < H(x) ≤ 0.5 (6)

where t =

√
ln

1

H(x)2 (7)

aSPI = t− c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3 , 0.5 < H(x) ≤ 1.0 (8)

where t =
√

ln 1
[1−H(x)2]

and c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.43278, d2= 0.189269, d3 = 0.001308
(9)

2.3.3. Reconnaissance Drought Index (RDI)

The RDI index can be calculated using three expressions, the first being the initial
value of RDI, shown in Equation (10):

α
(i)
0 =

∑12
j=1Pij

∑12
j=1PETij

, i = 1(1)·N, where j = 1(1)·12 (10)
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where Pij and PETij are P and PET of the jth month of the ith year and N is the number of
years of data available [14].

The second expression yields the normalized RDI, using Equation (11):

RDI(i)n =
α
(i)
0

¯
α0

−1, (11)

where α0 is the avg. of α0 and N is the number of years.
The third expression, giving the standardized RDI, is shown in Equation (12):

RDI(i)st(k) =
y(i)

k −
¯
yk

^
σyk

(12)

where yi is ln α
(i)
0 , yk is the avg. and σ̂yk is the SD. The standardized RDI expression is

based on the assumption that α0 follows a log-normal distribution [14].

2.3.4. Effective Reconnaissance Drought Index (eRDI)

The eRDI is calculated from P and PET (Equation (13)), where α is the initial form of
the index for one year and for a reference period of k months, as shown in Equation (13):

αk =
∑

j=k
j=1Pj

∑
j=k
j=1PETj

(13)

where Pj is modified by Pej, which refers to the effective monthly P in month j, and αk is
modified by αek, which is the initial form of the effective index; see Equation (14):

αe(k) =
∑

j=k
j=1Pej

∑
j=k
j=1PETj

(14)

Effective P is always based on monthly total P values and not on values for the entire
reference period [28].

The eRDI indexes in the normalized and standardized forms are calculated with
procedures similar to those for the RDI index.

2.4. Determination of Each of the Indices of Meteorological Drought (MD)

Using DrinC software, the SPI, aSPI, RDI and eRDI indices were calculated for the early
reference periods [11] and time frames of 1 month (January), 2 months (December–January),
3 months (November–January) and 6 months (October–January). Prior to obtaining the
four MD indices, the program was fed with monthly data of P, Tmax and Tmin, previously
calculated through daily data series. Two intermediate calculations were (1) PET, by the
Hargreaves method [41] and (2) the aridity index (AI), by the UNEP method [42–44]. To
obtain aSPI and eRDI, the effective P was calculated using the USDA method (CROPWAT
version), as it is a widely used method for arid and semi-arid climates [22,45]. Table 1 shows
a classification of the four indices of MD in Sinaloa based on the classification proposed
by [24,46]. This classification is similar to the one proposed by [30].
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Table 1. Classification of the indices SPI, aSPI, RDI and eRDI for Sinaloa. Source: Authors, from
(Tsakiris et al. (2007) and Proutsos and Tigkas (2020) [26,46]).

SPI, aSPI, RDI and eRDI (Dimensionless) Category

≥2.00 Extremely wet
1.5 to 1.99 Severely wet
1.0 to 1.49 Moderately wet
0.0 to 0.99 Mildly wet

0.0 to −0.99 Mild drought
−1.00 to −1.49 Moderate drought
−1.50 to −1.99 Severe drought
≤−2.00 Extreme drought

2.5. Z Normalization

To remove the measurement units [32], and to be able to apply the correlation and
regression analyses to the SPI, aSPI, RDI and eRDI indices and RMYob, a standardized Z
normalization was applied. This normalization method consists of subtracting the average
from each value of each series and dividing the result by the standard deviation [47]. This
process was applied to annual data from the five meteorological stations (P, Tmax and
Tmin) for the period 1982–2013.

2.6. Statistical Analysis
2.6.1. Normality, Correlation and Hypothesis Test between the SPI, aSPI, RDI, eRDI Indices
and Observed Rainfed Maize Yield (RMYob)

To establish whether a Pearson (r’P) or Spearman (r’S) correlation would apply, a
Shapiro–Wilk normality analysis was performed on all standardized time series [48]. An
r’P was applied to the series that did present normality, and r’S was applied to the series
that did not present normality. To identify whether r’P and r’S were significantly 6= 0, a
hypothesis test was applied (H0: r’P and r’S 6= 0; H1: r’P and r’S = 0). This test contrasted the
coefficients r’P and r’S with the critical correlation coefficients of Pearson (r’Pcr = |0.339|;
n = 32) and Spearman (r’Scr = |0.338|; n = 32), which were obtained from [49].

2.6.2. Models for Predicted Rainfed Maize Yield (RMYpr)

To obtain RMYpr, MLR [10,50] were initially applied, with the best model variable
selection method. For the models that did not present normality in the residuals, an MNR
was applied. The MNR was employed because this predictive model presented the highest
coefficient of determination (R2). In addition, [18] point out that it is a more efficient predictive
tool than MLR. In order to choose the best model (highest R2), combinations of variables that
presented the highest correlations from each weather station were used (Table 2).
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Table 2. Average, maximum and minimum values of P, Tmax, Tmin and PET, and average value of
A.I.

Weather Station

Climate Indicator Statistical Inference Culiacan La Concha Las Tortugas Rosario Sta. Cruz de A.

P (mm year−1)
Average 681.85 1027.97 913.59 898.34 783.06

Max 1180.70 1623.10 1606.30 1337.30 1254.58
Min 445.95 584.56 536.40 607.04 354.88

Tmax (◦C year−1)
Average 33.28 32.73 33.44 32.45 32.97

Max 35.30 35.18 35.26 33.41 34.48
Min 31.63 26.44 31.11 30.54 31.83

Tmin (◦C year−1)
Average 18.36 18.76 16.51 18.74 17.45

Max 21.10 20.82 18.54 19.81 18.97
Min 16.30 15.29 14.77 17.45 15.21

PET (mm year−1)
Average 1890.59 1845.52 1965.37 1807.18 1899.39

Max 2066.29 1987.68 2075.08 1891.61 2067.52
Min 1789.37 1435.05 1757.29 1595.92 1770.32

A.I. (dimensionless) Average 0.36 0.56 0.46 0.50 0.41

2.6.3. Validation of the Prediction Models: Normality, Correlation and Hypothesis Testing
for Observed Rainfed Maize Yield (RMYob) and Predicted Rainfed Maize Yield (RMYpr)

An r’P (data series with normality) and an r’S (data series without normality) were
applied between RMYob and RMYpr. To determine whether the correlations were signif-
icantly different from zero, a hypothesis test was performed. In this section, the tests of
normality and hypotheses also used Shapiro–Wilk and contrasted the critical correlation
coefficients of Pearson and Spearman, as previously indicated. In this study, all statistical
analyses were evaluated with a significance level of α = 0.05.

The programs used were Microsoft Excel 365, XLstat version 2021, PAleontological
STatistics (PAST) version 4.08, and CorelDRAW version 2019.

3. Results
3.1. Aridity Index (A.I.)

The lowest P, 354.88 mm year−1, was recorded at Sta. Cruz de A.; the highest Tmax
and highest Tmin, 35.30 ◦C year−1 and 21.10 ◦C year−1, respectively, were recorded at
Culiacán; and the highest PET was 2075.08 mm year−1, recorded at Las Tortugas (Table 2).
Only the La Concha station presented dry sub-humid conditions (A.I. = 0.56), the remaining
four stations being classified as semi-arid (A.I. ≤ 0.50).

3.2. Statistical Analysis

Normality, Correlation and Hypothesis Test between the SPI, aSPI, RDI, eRDI Indices
and Observed Rainfed Maize Yield (RMYob).

The only pair of data series that did present normality were aSPI-3 (p-value = 0.300) and
RMYob (p-value = 0.103), for the Culiacán station. The p-values for the remaining four stations
are: La Concha, aSPI-3 (p-value = 0.071) vs. RMYob (p-value = 0.030); Las Tortugas, aSPI-3
(p-value = 0.041) vs. RMYob (p-value = 0.661); Rosario, aSPI-3 (p-value = 0.016) vs. RMYob
(p-value = 0.006) and Sta. Cruz de A., aSPI-3 (p-value = 0.083) vs. RMYob (p-value = 0.001).

The index that registered the greatest sensitivity to MD is aSPI-3 (November–January).
Although the five weather stations presented a significant correlation (Culiacan, r’P = −0.347;
La Concha, r’S = −0.427; Las Tortugas, r’S = −0.475; Rosario, r’S = −0.468 and Rosario,
r’S = −0.381), four presented 0.50 ≥ A.I. ≥ 0.20 (semi-arid climate). El Rosario and Sta. Cruz
de A. stations recorded the highest number of significant correlations, eight in each case; how-
ever, the highest magnitudes were recorded at El Rosario; SPI-3 (November–January) = −0.460;
aSPI-3 (November–January) = −0.468, RDI-3 (November–January) = −0.448 and eRDI-3
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(November–January) = −0.461 (Table 3). Because the 3-month reference period (November–
January) had the highest number of significant correlations for the four indices of MD (Table 3),
in Figures 2a–e and 3a–e, it was decided to show the variations of SPI-3, aSPI-3, RDI-3 and
eRDI-3 for the time frame (November–January).

Table 3. Coefficients of r’P and r’S, between the SPI, aSPI, RDI and eRDI indices, and RMYob.

Drought Index with Reference
Period and Time Frame

Weather Station

Culiacán La Concha Las Tortugas Rosario Sta. Cruz de A.

SPI-1 (January) −0.124 −0.304 −0.301 −0.348 −0.397
SPI-2 (December–January) −0.103 −0.322 −0.248 −0.309 −0.328
SPI-3 (November–January) −0.344 −0.421 −0.453 −0.460 −0.387

SPI-6 (August–January) −0.268 0.110 0.128 0.141 −0.201
aSPI-1 (January) −0.124 −0.304 −0.301 −0.348 −0.397

aSPI-2 (December–January) −0.112 −0.324 −0.253 −0.314 −0.333
aSPI-3 (November–January −0.347 −0.427 −0.475 −0.468 −0.381

aSPI-6 (August–January) −0.229 −0.238 −0.021 −0.199 −0.281
RDI-1 (January) −0.134 −0.288 −0.305 −0.348 −0.395

RDI-2 (December–January) −0.103 −0.323 −0.270 −0.319 −0.329
RDI-3 (November–January) −0.311 −0.381 −0.480 −0.448 −0.385

RDI-6 (August–January) −0.257 0.148 0.097 0.147 −0.273
eRDI−1 (January) −0.134 −0.288 −0.305 −0.348 −0.395

eRDI-2 (December–January) −0.112 −0.321 −0.270 −0.319 −0.331
eRDI-3 (November–January) −0.312 −0.408 −0.474 −0.461 −0.376

eRDI-6 (August–January) −0.221 −0.191 −0.049 −0.166 −0.292
r’Scr = |0.338|; n = 32 Bold = significant correlation

r’P cr = |0.339|; n = 32
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Figure 3. Z anomalies of the drought indices SPI-3, aSPI-3, RDI-3 and eRDI-3, and RMYob (dimen-
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3.3. Variation of SPI-3, aSPI-3, RDI-3 and eRDI-3 Indices, and RMYob

SPI-3 and aSPI-3 indices for the five stations (Figure 2a–e) registered very similar
magnitudes; however, for Culiacán (Figure 2a), coincidentally both the highest (in 1991)
and lowest (in 1995) magnitudes were registered. These values were for SPI-3 (from −1.32
to 2.68) and for aSPI (from −1.32 to 2.48) respectively, and are classified from moderately
dry to extremely humid MD values (Table 1).

3.4. Z Normalization

The highest magnitudes were recorded for 1991 at the Culiacán station (eRDI-3 = 4.11;
Figure 3a) and La Concha station (RDI-3 = 3.91; Figure 3b). The minimum values were
recorded at the Culiacán station (aSPI-3 = −1.42 and SPI-3 = −1.40; Figure 3a) for 1998. The
minimum value of yield was recorded for Las Tortugas in 2009 (RMYob = −2.46; Figure 3c).

3.5. Models for Calculating Predicted Rainfed Maize Yield (RMYpr): Normality, Correlation and
Hypothesis Test

From the results of the initial MLR, only the Culiacán station (Figure 4a) presented
normality in the residuals (p-value = 0.68), with r’P = 0.502 and R2 = 0.252. The r’S and R2

for the four remaining weather stations (Figure 4b–e) are La Concha (r’S = 0.423; R2 = 0.179),
Las Tortugas (r’S = 0.569; R2 = 0.324), Rosario (r’S = 0.706; R2 = 0.499) and Sta. Cruz de A.
(r’S = 0.6259; R2 = 0.392).

The 32-year variations of RMYob and RMYpr for the five meteorological stations are
shown in Figure 5a–e, as well as the five equations of the respective models.

Culiacan = 0.83 + 0.23(aSPI − 2)− 0.22(aSPI − 3)− 0.06(SPI − 6)− 0.06(aSPI − 2)(aSPI − 3) (15)

La Concha = 1.02 + 0.23(aSPI − 1)− 0.05(aSPI − 2)− 0.06(aSPI − 3)− 0.12(aSPI − 6)

−0.37(aSPI − 1)2 + 0.28(aSPI − 2)2 + 0.03(aSPI − 3)2 − 0.12(aSPI − 6)2 (16)

Las Tortugas = 1.09− 0.61(eRDI − 1) + 0.09(eRDI − 2)− 0.69(RDI − 3) + 0.04(SPI − 6)

+0.84(eRDI − 1)2 + 0.61(eRDI − 2)2 − 0.95(RDI − 3)2 − 0.05(SPI − 6)2 (17)

Rosario = 1.43− 1.37(aSPI − 1) + 0.61(eRDI − 2)− 0.26(aSPI − 3)− 0.09(aSPI − 6)

+0.89(aSPI − 1)2 − 1.03(eRDI − 2)2 − 0.15(aSPI − 3)2 − 0.06(aSPI − 6)2 (18)

Sta. Cruz de A. = −0.19− 0.40(aSPI − 1) + 0.11(aSPI − 2) + 0.02(SPI − 3) + 6.44(eRDI − 6)

+0.11(aSPI − 1)2 + 0.03(aSPI − 2)2 − 0.19(SPI − 3)2 − 7.75(eRDI − 6)2 (19)
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Figure 5. Annual variation of RMYob and RMYpr (T ha–1) (a–e). Rosario is the station with the greatest
predictive capacity. The predictive capacity of the five models (Equations (15)–(19)) is low (R2 < 0.500)
but significantly different from zero, especially for Las Tortugas (Equation (17)), Rosario (Equation
(18)) and Sta. Cruz de A. (Equation (19)) for aSPI and eRDI for one month (January), two months
(December–January) and three months (November–January).
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4. Discussion

The results of A.I. are similar to those reported by [51], who state that the climates
of Sinaloa range from sub-humid temperate to very warm and dry, presenting semi-arid
tropical agroclimates in the southwestern part [52].

The fact that only a couple of the series presented normality is in agreement with [15],
who argues that many phenomena in nature do not behave linearly; thus, there are alterna-
tives for data transformation, or the use of the Spearman correlation [35,53].

According to Table 3, the highest r’P and r’S, which were registered for aSPI-3
(November–January) and eRDI-3 (November–January), can be attributed to the fact that
effective P, implicit in the calculation of these two indexes, is more sensitive to variations
in the use of rainfed maize water [46,54], in addition to the fact that aSPI is an index that
should be used preferentially in semi-arid climates, especially when increased sensitivity is
desired [11,22,46].

The high correlation of the three-month reference period (November–January) between
the SPI, aSPI, RDI and eRDI indices and RMYob is similar to that reported by [11], who
argue that in the presence of MD, using RDI for reference periods of one and two months,
the yield of sorghum can be successfully correlated; however, for 3-month periods, there
may be a clear improvement in the early identification of drought in most cases [20].

The highest and lowest magnitudes of aSPI and SPI shown in Figure 2a agree with
what was reported by [32,55], who point out that the oceanic El Niño index for 1991
registered a warm phase, which characterized an El Niño event (phase > 0.50) and for 1995,
it registered a cold phase that was close to a La Niña event (phase > −0.50).

The high magnitudes of eRDI-3 for Culiacán (Figure 3a) and RDI for La Concha (Figure 3b)
in 1991 were associated with the occurrence of an El Niño event, which according to [56] was
recorded in the period 1991–1992 and affected the Gulf of California (Sinaloa coast).

The minimum values of SPI and aSPI, recorded at the Culiacán station for 1998
(Figure 3a), were associated with the following oceanic indices anomalies: negative for the
Pacific decadal oscillation, positive for the Atlantic multidecadal oscillation, negative for
the oceanic El Niño index and negative for sea surface temperature in the equatorial and
Caribbean seas, and positive for geopotential height in the coastal zone of Sinaloa [32,55].

The minimum value of RMYob, recorded in Las Tortugas for 2009 (Figure 3c), is at-
tributed to the fact that in the same year, the two most extreme minimum anomalies of
the period 1980–2012 were presented: (1) positive anomaly of the Pacific decadal oscil-
lation (condition associated with the El Niño episode) and (2) negative anomaly of the
Atlantic multidecadal oscillation (condition associated with the La Niña episode), which
are considered to generate P [32,57].

The low magnitudes of RMYob (<1.0 T ha−1, Figure 2) are consistent with what was
found, for example, by [32,58], who argue that in the years 1990, 1997–2001, 2003, 2005
and 2008–2013, there were low magnitudes of P and extreme MD, which are associated
with the occurrence of low magnitudes of sea surface temperature in the equatorial and
Caribbean seas and with low magnitudes of geopotential height at the 700 hPa level on the
Sinaloan coast. The minimum RMYob registered in 1982 for the Culiacán, Rosario and Sta.
Cruz de A. stations were associated with the intense cyclonic P that occurred in the period
1982–1984 [58], which could damage maize yields by waterlogging. All these dry and wet
periods mentioned by [32,58] were also recorded in this study.

The equations of models 15–17 were sensitive, which agrees with [11,22,46,54], who
argue that in arid and semi-arid climates, the MD indices are more sensitive when effective
P is used early.

5. Conclusions

• The sensitivity of four indices of MD (SPI, aSPI, RDI and eRDI) is estimated to calcu-
late RMYpr.
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• The four drought indices are used with four reference periods and time steps of one
month (January), two months (December–January), three months (November–January)
and six months (August–January).

• The most sensitive models are for the Las Tortugas, Rosario and Sta. Cruz de A.
weather stations, which include the aSPI and eRDI indices in their equations, with
reference periods and time frames of one (January), two (December–January) and
three months (November–January).

• In Sinaloa, it is of vital importance to calculate indices of MD in which effective P is
included as the main parameter, mainly because these indices respond with greater
sensitivity in arid and semi-arid conditions.

• At all five weather stations, the correlations between RMYob and RMYpr are signifi-
cantly different from zero.

• It is recommended to apply these predictive models to each subregion (municipality)
of southern Sinaloa, in order to have reliable early predictions, especially when it
is desired to prevent severe socioeconomic damage in one of the Mexican states
historically the most important for the production of rainfed maize.

• In future research, it is recommended to add more predictor variables (indices of
meteorological drought or environmental variables) to try to increase the predictive
capacity (R2) of the models. Some examples could be the standardized precipitation
and evapotranspiration index, crop moisture index, Palmer drought severity index,
minimum temperature and severe cold index.
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