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Abstract. One of the most frequently-used body regions in daily activities is the
upper limbs, and many of the work-related musculoskeletal disorders occur in this
area, mainly the hands. We highlight the importance of studying hand movements
executed at work, and how they affect workers’ health and productivity. Data were
collected from a hand-motion capture system conformed by six inertial measure-
ment units and six resistive force sensors from hand and fingers movements. Two
common hand movements were analyzed using wrist flexion-extension with a
small (−15° to 15°) and medium (<−15° and >15°) range of motion and flexion-
extension movement with the hand pronated-supinated. Data were classified by
traditional methods. A more complex movement involving a 3-finger spherical
grip was also recorded. It was found that the lectures from the six inertial sensors
and the six force resistive sensors showed a pattern that facilitates the recognition
of basic and more complex movements (flexion-extension and spheric handgrip)
through visual analysis of the plotted data, even at different ranges of motion.

Keywords: Wrist flexion-extension · Wrist pronation-supination · Spherical
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1 Introduction

One of the human body regions that is frequently used in daily and work activities
are the upper limbs, mainly the hands [1]. Most manual-work at factories is highly
repetitive and requires huge force and awkward postures to be executed, sometimes
exceeding the workers’ capacities [2]. This behavior can be the cause of many work-
related musculoskeletal disorders, which represent a third of the injuries at work, a quarter
of lost time, and one-fifth of permanent disabilities [3]. As a result, it is important to
study the hand movements executed at work to see how they can affect workers’ health
and productivity.

Human Activity Recognition (HAR) has been widely used to analyze human–
machine interactions [4, 5]. The main goal of RAH is to identify activities based on
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the information obtained through a sensory network, which has been possible by the
development of low-cost, small-size, and high-computational-capacity technologies [6].

When handling the object, the subject can independently decide how to grasp it,
increasing the complexity of the activity recognition [7]. Xue et al. [7] recommended
that motion capture systems used in object handling recognition should include tactile
and force sensors in addition to inertial sensors.

This study relies on the analysis of data collected by a hand-motion capture system
conformed by inertial and force resistive sensors to determine its use in the classification
of the hand and fingers movements.

2 Method

2.1 Motion Capture System and Data Collection

A data glove motion-capture system (MoCap) adapted from six inertial sensors with 9
degrees of freedom located on the proximal phalanges and the dorsal side of the hand, and
six force resistive sensors, collocated on each fingertip and palm, were used to generate
data regarding hand and fingers movements.

Data collected included ten variables for each finger and hand: triaxial acceleration
(m/s2), triaxial angular velocity (rad/s), triaxial magnetic field (µT), and the force exerted
by each fingertip described by the voltage (V) measured by the master–slave system. Data
processing used Matlab 2019b software in a laptop running Windows 10. The lectures
from the inertial sensors were calibrated using zero motion and zero rate methods before
data collection [8].

A simple validity procedure for the inertial and force resistive sensors was performed
prior the measurements to assure the correct MoCap system-computer communication.

2.2 Experimental Design

Two movements using the dominant hand were performed to analyze the capability of the
data glove in the recognition of the hand and fingers movement: wrist flexion-extension
and spheric hand grip. The flexion-extension movement was based on the Rapid Upper
Limb Assessment (RULA) criteria [9]. Movements within the range −15° to 15° and
movements in a wider range (<−15° and >15°) were performed (Fig. 1a). A goniometer
with 1° resolution was placed on the dorsal side of the hand to assure the movement was
in the correct range.

Additionally, flexion-extension movement was recorded when the wrist was
pronated, supinated, and in a neutral position (Fig. 1b). Both datasets were classified
using the Classification Learner application from Matlab 2019b. Data were segmented
based on a sliding window with size = 30 observations and step = 10 observations.
Accuracy of k-nearest neighbors (k-NN), the support-vector machine (SVM), decision
trees, and Naïve–Bayes algorithms were obtained as performance metrics [10].

The spheric hand grip was performed using five fingers. A compressible ball was
used to reproduce the movement.

The results obtained for the two experimental movements were plotted and graphi-
cally analyzed to determine if it was possible to identify a movement pattern that could
be used in classification methods.
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Fig. 1. Hand movements

3 Results

Data collected from the Mocap system while performing the wrist flexion-extension in
the −15° to 15° range of movement are presented in Fig. 2a, while the data collected from
a wider range are presented in Fig. 2b. Only the readings obtained by the inertial sensor
located on the dorsal side of the hand are presented because the fingers are not involved
in the flexion-extension wrist movement considered in this study. The differences in the
lecture’s amplitude for all the variables can easily be appreciated.

Figure 3 presents the accelerometer, gyroscope, and magnetometer readings obtained
from the sensor positioned on the dorsal side of the hand, when the wrist was in a
neutral, pronated, and supinated position (lectures 1–500, 500–1000, and 1000–1500,
respectively).

Results obtained when classifying both datasets are shown in Table 1. The accuracy
value indicates that in both cases, most of the time data can be classified correctly.

Figure 4 shows the confusion matrix obtained for the tree classifier. Figure 5 and 6
show the data obtained for the spherical grip movement. Figure 5 presents the readings
obtained by the inertial sensors located on the proximal phalange of each finger and the
dorsal side of the hand. In Fig. 6, there is a clear pattern corresponding to each spherical
grip exerted from each force-resistive sensor by the lectures.

4 Discussion

In the case of the small wrist flexion-extension movement, the acceleration components
x and y obtained by the inertial sensor located at the dorsal side of the hand was near to 0,
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Fig. 2. IMU data for small–wide flexion-extension movement of the wrist

while the z-axis acceleration was near 9.81 m/s2 (Fig. 3a). Even though the component
of acceleration along the x-axis was near to 0, it was the only variable that let us identify
the small movements of the hand graphically. Due to the small range of movement,
the angular velocity was close to 0 rad/s (Fig. 3b). In the wider wrist flexion-extension
movement analysis, the lectures behaved differently: the full set of acceleration, angular
velocity, and magnetic field components present a patron according to movement that
can be easily identified. Even though data read from the magnetometer present a cyclical
pattern corresponding to each movement exerted, careful interpretation of the movement
recognition is necessary due to variations in the readings that can be obtained from the
different object materials and the same movement.

When performing the flexion-extension movements in combination with pronation-
supination of the wrist, patterns can also be identified from the accelerometer, gyroscope,
and magnetometer data. The results obtained by analysis of the corroborated data from
the different common classifiers can be categorized correctly, which could be associ-
ated with the isolation of the movements performed in a theoretical work environment.
This study limitation could be solved by testing the hand mocap in common activities
performed in real industrial work.

In the case of the spheric 3-finger handgrip movement, the dorsal side of the hand
values do not allow an easy way to identify a patron due to the movement characteristics



118 G. Rodríguez-Vega et al.

Fig. 3. IMU data for flexion-extension of the wrist with a neutral, pronated, and supinated wrist

Table 1. Classical classifiers accuracy

Classification
method

Accuracy (%)

Small-wide FE Pronation-supination
+ FE

Decision tree 95.9 98.1

Naïve-Bayes 92.4 97.6

SVM 94.5 81.9

kNN 93.5 97.5

(hand opening and closing). On the contrary, the thumb, index, middle, ring, and little
finger lectures show an easy-to-identify patron in the data plot. Due to the fingertip
contact with the manipulated object, the voltage measures enable identification of the
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Fig. 4. Confusion matrix of the decision tree classifiers

Fig. 5. IMU data for the 3-finger spherical grip

time when the force resistive sensors placed at the thumb tip and index and middle
fingertips were used, and the palm, ring finger, and little finger force sensors were not.
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Fig. 6. Voltage value for the FSR and the spherical grip

5 Conclusions

It was demonstrated that the use of only six inertial sensors with 9 degrees of freedom and
six resistive sensors are required to identify the basic movement of flexion-extension in
small and large ranges of motion, as well as when identifying a pronation and supination
position when flexion-extension movement is executed. Data patterns can also be found
when performing a 3-finger spherical handgrip. This study can be extrapolated to the
other two wrist movements, such as lateral movements, and to the common hand grasp
types.
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