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Abstract: Mexican Tequila is one of the most demanded import spirits in Europe. Its fast-raising 
worldwide request makes counterfeiting a profitable activity affecting both consumers and legal 
distillers. In this paper, a sensor-based methodology based on a combination of infrared measure-
ments (IR) and multivariate data analysis (MVA) is presented. The case study is about differentiat-
ing two categories of white Tequila: pure Tequila (or ‘100% agave’) and mixed Tequila (or simply, 
Tequila). The IR spectra were treated and fused with a low-level approach. Exploratory data analy-
sis was performed using PCA and partial least squares (PLS), whilst the authentication analyses 
were carried out with PLS-discriminant analysis (DA) and soft independent modeling for class anal-
ogy (SIMCA) models. Results demonstrated that data fusion of IR spectra enhanced the outcomes 
of the authentication models capable of differentiating pure from mixed Tequilas. In fact, PLS-DA 
presented the best results which correctly classified all fifteen commercial validation samples. The 
methodology thus presented is fast, cheap, and of simple application in the Tequila industry. 

Keywords: white Tequila; authentication; IR spectroscopy; chemometrics; data fusion; beverage al-
coholic industry 
 

1. Introduction 
Moderate and responsible consumption of spirits and wine is associated commonly 

with social relationships during leisure times and relaxing activities. People like tasting 
good products and experiencing new flavors and are prone to accept slightly higher ex-
penses than usual. However, problems may arise when trust is broken by illicit practices 
like counterfeiting. At best ‘only’ economical losses are suffered, at worst health problems 
may arise. 

Drinking a good spirit or wine is a hugely common social activity in many countries 
and thus an honest, historical, labor-demanding, and profitable industrial sector is de-
voted to those goods. Worldwide, the leading spirits markets in the 2010–2020 period ac-
cording to value sales were (decreasing order) USA, Japan, Russia, China, UK, France, 
Germany, Mexico, Spain, and Canada [1]. According to the last European survey and sta-
tistics [2], during the period 2008–2013 EU annual production of spirits amounted to €22 
billion and imports from third countries amounted to €1 billion (UK and France being the 
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largest producers of spirits, with production valued at more than €5 and €4 billion, respec-
tively) [3]. More recent figures indicate a European production of 25 million hectoliters of 
spirits and about €37 billion sales [4]. 

With such big figures in place, adulteration of alcoholic beverages has become a very 
important practice worldwide and a health-threating problem because methanol (a possi-
ble contaminant of ethanol) is very harmful for human health. A recent study presented 
by the EU Intellectual Property Office (EUIPO) compiled previous unreported studies in 
which around 5.3% of sales of spirits and wine correspond to counterfeited products (ca. 
€2.3 billion), which causes ca. €5.2 billion in total lost sales and affects around 31,850 lost 
employments [5]. Unfortunately, these figures are rising fast [6,7] as the €1.3 billion lost 
sales in 2016 demonstrated [7]. 

One of the most EU-demanded imported spirits is Mexican Tequila, which agrees 
with a worldwide rise in its demand during the last years and with ca. 3.6% increments 
until 2020 [8]. In 2020, a total of 345.2 million liters of Tequila (207.2 million ‘100% agave’ 
and 137.9 million ‘mixed’) were produced within the denomination of origin of which 
76.6% were exported [7]. Tequila is the spirit obtained after the double distillation of 
milled and cooked pinecones or stems of Mexican Agave Tequilana Weber blue variety 
[9]. Tequila’s denomination of origin was first established in 1974 [10] and recognized by 
the EU in 1997 [11]. The Tequila´s Regulatory Council (in brief, CRT, Consejo Regulador del 
Tequila) was created in 1993 to certify the quality and authenticity of Tequila and to avoid 
its undue imitation outside Mexico. By 2017, five countries, including the EU, imported 
ca. 95% of exported Tequila (the US being by far the main importer). 

In Mexico alone, Tequila distillers estimated that ca. 40–50% of Tequila sales were 
adulterated, yielding an economic loss of about US $0.55 billion (equivalent to 60 million 
liters) [12]. Various types of counterfeit are common, such as the addition of water, alco-
hol, colorants, and aromas to the original beverages, even under poor hygienic conditions, 
leading to potential risks associated to their consumption. In particular, the most frequent 
fraud is the increased amount of methanol in the beverage, well above the norm [13]. To 
complicate things further, it is almost impossible for the final consumer to visually iden-
tify counterfeited Tequilas because they are sold as ‘original Tequila’, sometimes even in 
bottles and boxes that are very good copies of the original ones. 

White Tequila is the non-matured (in wood barrels) spirit of blue agave. It is also 
called ‘silver’ Tequila and it is likely the most common type of Tequila sold worldwide. If 
the spirit is matured, it leads to rested and aged Tequila. A common form of counterfeiting 
white Tequila consists of an undue declaration at the label, stating that it is ‘100% from 
blue agave’ when, in fact, it was obtained from agave Tequilana Weber variety blue and 
other sources of fermentable sugars (sugar cane, other agaves, etc.). Please note that the 
second possibility is legal as far as only 49% of the fermentable sugars employed to get 
Tequila proceed from sources different from blue agave, which should be called ‘mixed 
Tequila’ or simply ‘Tequila’ and its denomination must be declared on the label according 
to CRT guidelines. Despite health might not be affected in this case, the denomination of 
origin and/or the label declaration is violated yielding deceptive products for consumers 
(including economic deception) and leading to economic losses to distilleries. 

In previous works, reviews were made to ascertain the analytical techniques most 
commonly applied to authenticate Tequilas and it was concluded that from a pragmatic 
point of view usual infrared (IR) and ultraviolet–visible (UV–Vis) spectrometric tech-
niques would be favored for routine quality control [14,15]. In fact, a study was presented 
in order to show that common UV–Vis spectrometry can be a powerful tool to assess dif-
ferent qualities of Tequila (with significantly different prices: white, gold, rested, and aged 
Tequilas) and that they can be easily differentiated from Mezcal, another Mexican spirit 
[16]. 

The use of these spectrometric nondestructive techniques is usually potentiated by 
hybridizing them with multivariate data analysis (MVA) algorithms (in brief, chemomet-
rics). That may lead to off-line or in-line sensors of potential interest for quality control 
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and authentication analyses in the modern alcoholic beverage industry and related organ-
izations. In addition, they are powerful, potential tools to evaluate the denominations of 
origin and to perform geographical discrimination of products. In addition, chemometric 
methods play an important role in the recent popularity of analytical screening method-
ologies. The essential objective of chemometrics is to extract useful information and get 
meaningful conclusions through the most appropriate data treatment, modeling, and 
characterization of samples, and the study of related variables [17–20]. 

Data fusion consists of combining results of different measurement techniques in 
hopes that they all can lead to more powerful and reliable authentication models, and to 
a better understanding of the chemistry behind the samples [21–23]. Data fusion can be 
performed at low, mid, and high levels. The former consists simply of concatenating data 
from all sources into a single ‘raw’ data matrix. The mid-level approach first extracts sep-
arately important information from each data set and then concatenates it into one matrix. 
Finally, the high-level approach concatenates the individual results derived from classifi-
cation or regression models to obtain a final data matrix [23]. Despite several researches 
aimed at studying different properties of Tequila with chemometrics [14,24,25], up to date, 
to the best of the authors’ knowledge, this is the first work which considers data fusion to 
handle spectroscopic data from Tequila. 

The aim of this paper is to develop a sensor-based methodology that combines IR 
spectrometry, chemometric tools, and data fusion to address a complex problem: to eval-
uate whether white Tequila is 100% from blue agave or whether it comes from a mixture 
of blue agave plus other sources of sugars (recall that to be considered Tequila, at least 
51% of them should be from Agave Tequilana Weber blue variety). This is an insidious 
problem because the physicochemical and organoleptic properties of both categories of 
white Tequila are very similar (but for gross adulterations) and despite health might not 
be affected, deceptive products are released to consumers. 

2. Materials and Methods 
2.1. Samples 

A total of sixty-five samples of white Tequila from different Mexican brands were 
used in this study. Thirty-six were of ‘100% agave’ category (TB—’Tequila Blanco’) and 
twenty-nine were of the ‘mixed’ category (TBM—’Tequila Blanco Mixto’). Samples were 
obtained in specialized Mexican liquor stores from well-known Tequila producers whose 
labels displayed the corresponding CRT quality seals, some bottles were provided by CRT 
itself. This collection was selected to include different factories, brands, raw materials, 
processing units, etc. Those details cannot be disclosed due to confidentiality agreements. 

2.2. Instrumentation 
A PerkinElmer Frontier FTIR Spectrometer, equipped with a single-reflection dia-

mond PerkinElmer UATR device, was employed. Samples were withdrawn from the bot-
tles and poured (50 µL) directly on the surface of the UATR to perform the measurements 
and capped with a lid. Then, the crystal was gently dried with cotton, washed with etha-
nol and distilled water, and dried with lens cleaning tissues. MIR (medium-range infra-
red) spectra were obtained in the 4000–400 cm−1 range, using 16 scans, with a nominal 
resolution of 4 cm-1, and background corrected (a background per sample). They were 
transformed to absorbance, ATR corrected (using the built-in PerkinElmer proprietary 
function) to take account of radiation penetration and baseline corrected; finally, they 
were digitized and exported (1 datum per cm−1). 

Baseline correction was made setting the correction points manually for each type of 
Tequila before performing the MVA. The spectra of all Tequilas showed the same spectral 
bands, with minor differences in the spectral band centered around 1045 cm−1. In particu-
lar, the band was a bit broader for ‘100% blue agave’ Tequilas as it extended to 954.5 cm−1, 
whereas the band for the mixed Tequilas finished at 957.8 cm−1. 
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A practical problem arises here when the methodology is to be implemented in rou-
tine quality control laboratories because although selecting the baseline correction is sim-
ple for the authenticated samples used in modeling (e.g., a set of wavenumbers per cate-
gory of white Tequila) this is not the case for real samples, for which the class is unknown 
(or suspicious) and so selecting the ‘correct’ baseline is not possible. A possible solution is 
to base the models on fused data gathered from different baseline corrections, as studied 
in next section. 

2.3. Multivariate Analysis and Data Fusion 
The spectral data treatments, digitation, and exportation were made using the Perki-

nElmer proprietary software, Spectrum. Unsupervised models—used to visually explore 
data—such as principal component analysis (PCA) and supervised models—employed 
for classification purposes—like partial least squares (PLS), soft independent modeling 
for class analogy (SIMCA), and partial least squares discriminant analysis (PLS-DA) were 
built using PLS_Toolbox 8.6.1 (Eigenvector Research, Manson, WA USA) for MATLAB 
environment (MathWorks Inc., Massachusetts, USA, versions R2015a and R2017b). The 
classification results of each model were evaluated with several quality performance met-
rics (QPM), mainly: (i) sensitivity (SENS), (ii) specificity (SPEC), (iii) positive predictive 
value (PPV) or precision, and (iv) negative predictive value (NPV). Twenty-two comple-
mentary QPMs for each classification model—calculated from the four main QPMs pre-
viously mentioned—are also presented. However, detailed explanations for each of them 
are out of the scope of this work. The reader is kindly referred to the literature cited herein 
where detailed information can be found [26,27]. 

After preliminary studies focused on detecting outliers and searching for the spectral 
regions less affected by the spectral bands of the OH group (water plus alcohols), the spec-
tral working region was established at the fingerprint region, i.e., 1800–451cm−1. 

At the same time, the baseline correction had to be considered in a pragmatic way. 
As samples to be investigated might be in reality of any of the two categories (classes), 
and so without a sound reason to select the baseline correction of the ‘mixed’ or of the 
‘100% agave’ Tequilas, a way to consider this into the models is to develop them with two 
baseline corrections: 
1. A unique correction for all kinds of white Tequilas (4000, 957, and 450 cm−1); and 
2. A baseline correction specific for each class (4000, 1854, 954.5, and 450 cm−1 for Tequi-

las ‘100% agave’; and 4000, 1854, 957.8, and 450 cm-1 for the mixed ones). 
For simplicity, let us call blocks (or matrices) A and B the options in points 1 and 2, 

respectively. Hence, the low-level data fusion [21] consisted of concatenating block B to 
block A after its 1350th variable, forming a new fused-data matrix [A B], of the size 65 × 
2700 (samples × variables). In this way, the suspicious sample will be corrected at the com-
mon points and at the ‘100% agave’ ones (it will be absolutely rare to sell ‘100% agave’ 
Tequila as ‘mixed’). 

The training set was made up of fifty samples randomly selected, twenty-seven for 
TB class and twenty-three for TBM class. The fused-data matrix [A B] was auto-scaled and 
used for the exploratory analysis with PCA and PLS, and for the authentication analysis 
with SIMCA and PLS-DA. Venetian blinds was employed as cross-validation technique, 
using ten PCs (PCA and SIMCA) or LVs (PLS and PLS-DA), ten splits, and one sample 
per split. 

Different classification models were studied, each of them with different setups, and 
once the most satisfactory model for each chemometric approach was selected, external 
validation was performed using a validation set composed of 15 samples, 9 for TB and 6 
for TBM classes, which was auto-scaled using the parameters derived from the training 
set. 
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3. Results and Discussion 
The IR fingerprints of two representative samples of TB (100% agave) and TBM 

(mixed) classes are displayed in Figure 1. Strong molecular vibrations are observed in this 
characteristic region of white Tequila. In essence, the pronounced peak from variable #155 
(1646 cm−1) is assigned to the bending vibration of OH in water and to the O–H defor-
mation, which is important in the identification of alcohol compounds. The small peak at 
variable #345 (1456 cm−1) corresponds to C–OH bending deformation. The small band at 
variable #416 (1385 cm−1) may be due to the stretching vibrations of C–O of tartaric acid 
whilst the band at variable #715 (1086 cm−1) may be due to the stretching vibration of C–
O of sucrose (C–O stretching of secondary alcohols). These two latter bands overlap with 
the C–H stretching of CH2 and CH3 moieties. The sharp peak represented by variable #757 
(1044 cm−1) is attributed to the stretching vibration of the C–O bond in primary alcohols, 
and the small peak at variable #923 (878 cm−1) is assigned to some meta–disubstituted ar-
omatic compounds in white Tequila [28–30]. 

The fused-data matrix is shown in Figure 2. It is worth noting that independent data 
analysis of blocks A and B showed poor results, but when data were fused, the explora-
tory analysis and the authentication analyses improved notably (i.e., the number of mis-
classifications decreased). 

 
(a) 

 
(b) 

Figure 1. IR spectra of two samples of white Tequila. (a) TB: ‘100% agave’ Tequila and (b) TBM: 
‘mixed’ Tequila. 
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Figure 2. IR spectroscopic fused data of white Tequilas. Variables #1–1350 represent block A in 
which the base line was corrected in the same points for both TB and TBM classes. Variables 
#1351–2700 represent block B in which the baseline was corrected in different points according to 
each class (see Section 2.3 for details). 

3.1. Exploratory Analysis 
The main goal of exploratory data analysis is to visually identify possible groups of 

samples [31], being the most common technique for this PCA. Despite the typical predic-
tive use of PLS, it can also be used for exploration purposes since its algorithm pursuits 
the calculation of factors that capture both variance and correlation [32], thus resulting 
more powerful than PCA. 

For the [A B] fused dataset, the PCA model required three principal components 
(PCs), which were selected according to the explained variance (97.8%) and visualization 
of the information of interest (results in this respect where very poor); whilst for the PLS 
model, three latent variables (LVs) were considered, which explained 97.3% of the vari-
ance, with root mean square errors for calibration (RMSEC) and cross-validation 
(RMSECV) of 0.50 and 0.55, respectively (they are very similar, so overfitting is not ex-
pected). Note that PC1 explained ca. 92% of the information but it is not displayed here 
because it ‘merely’ ordered the samples according to the percentage of ethanol they had. 
However, no useful groups of samples could be visualized. Indeed, the only vision that 
allowed some differentiation (very poor) is presented in Figure 3. If different color codes 
or symbols would not have been used no groups would have been guessed. On the con-
trary, PLS displays quite clear groups, with the two categories easily differentiated (Figure 
4). Additionally, samples TBM 09 and TBM 34 were misplaced in the score plots, but only 
TBM 34 was considered as an outlier since it affected the classification models and thus it 
was excluded from the models. The reason for such different behavior among the two 
techniques is, precisely, what makes PLS so powerful: the extraction of spectral infor-
mation maximally related to the property of interest, while PCA only decomposes the 
overall variance in its major components (regardless of being useful to see groups of sam-
ples). 
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Figure 3. Exploratory analysis: PCA score plots of white Tequilas fused data (TB: ‘100% agave, and 
TBM: ‘mixed’). 

 
Figure 4. Exploratory analysis: partial least squares (PLS) score plots of white Tequilas fused data 
(TB: ‘100% agave’, and TBM: ‘mixed’). 

3.2. Authentication Analysis 
After data exploration, SIMCA and PLS-DA models were employed to authenticate 

white Tequila considering the ‘100% agave’ category as target class. The results are sum-
marized below. 

3.2.1. SIMCA 
This chemometric method builds a classification model with classes independently 

modelled (hence its name) from the training set. First, an individual PC model is built per 
class. In this case, since previous PCA exploratory analysis suggested three PCs, they were 
studied and kept for both classes. They explained 98.6% and 98.1% of the variance for TB 
and TBM, respectively. Then, spatial regions of probability around each Tequila class are 
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constructed considering the average distances of the samples to the PCs subspace and a 
critical distance is calculated by means of an F statistic [32]. 

The classification results can be evaluated with the Coomans’ plot (Figure 5). Samples 
coded as TB 04, TBM 41, and TBM 73 are placed in the upper-right quadrant, which are 
considered as not recognized and are not classified in any of the two classes. Moreover, 
samples TB 91 and TB 127 are correctly classified, but close to the boundary of the not 
recognized quadrant, which may indicate that these samples could present some authen-
ticity (i.e., compositional) problem. 

Table 1 presents the contingency results that were used to calculate the QPM figures 
(Table 2). The sensitivity (SENS) also known as ‘recall’ or ‘true positive rate’ indicates the 
ratio of agreement of TB class, and specificity (SPEC) or ‘true negative rate’ shows the 
ratio of agreements of TBM class. For the SIMCA model, SENS and SPEC were 0.89 and 
0.67, respectively. Though these values can be considered low, the result for the predictive 
capability (both positive predictive value (PPV) or precision, and negative predictive 
value (NPV)) is 1.00 for each of them. These results indicate that the model is good in 
assigning samples to classes, since precision represents the proportion of target samples 
correctly allocated in TB class and NPV the proportion of target samples correctly as-
signed to TBM in relation to the total samples assigned to those classes, respectively. 

 
(a) 

 
(b) 

Figure 5. Coomans’ plot for soft independent modeling for class analogy (SIMCA) validation sam-
ples. (a) Complete Cooman’s plot and (b) magnified view of the bottom, left-hand part of (a). 
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Table 1. Classification of the validation samples using SIMCA. 

 
TB: target class (White Tequila ‘100% agave’); TBM: non-target class (White Tequila ‘mixed’). 

Table 2. Main quality performance metrics (QPM) for PLS-DA and SIMCA models. 

Quality Metrics PLS–DA SIMCA 
Sensitivity (SENS) 1.00 0.89 
Specificity (SPEC) 1.00 0.67 

Positive predictive value 
(precision) (PPV)  

1.00 1.00 

Negative predictive value 
(NPV) 

1.00 1.00 

3.2.2. PLS-DA 
PLS-DA is a latent variable-based method that, first, builds a PLS regression model 

using a set of latent variables (LV) that are employed to establish limits for the classes and, 
then, it carries out a discriminant analysis (DA) to classify the samples into a particular 
class. The boundaries among the different classes are calculated using the Tequilas train-
ing set only. 

In this study, three LVs (explaining 97.3% of the total variance) were used to create 
the PLS-DA model from the IR fused data. For this, ‘100% agave’ and ‘mixed’ Tequilas 
were coded as 1 and 0, respectively. A threshold value of 0.5 was established as a decision 
criterion for the classification of the samples. In this sense, samples with scores above the 
decision criterion (values around one) were classified as ‘100% agave’ whereas samples 
with scores below the decision criterion (values around zero) were considered as ‘mixed’. 
Moreover, an uncertainty region of plus/minus 0.1 the threshold value was established to 
improve the reliability of the validation results. 

Figure 6 displays the PLS-DA classification plot. The solid line represents the thresh-
old value whereas the dotted lines indicate the uncertainty region, where the sample is 
labeled as inconclusive. For the current model, all samples were correctly classified in 
their corresponding categories in validation. However, validation samples TB 04, TB 127, 
and TBM 54 are close to the uncertainty region. In fact, special attention must be given to 
samples TB 04 and TB 127 because slightly problematic results were obtained for them 
also with SIMCA, where sample TB 04 was not recognized by the model and TB 127 was 
allocated near the limit of ‘not recognized’ quadrant. 

The contingency results for validation are shown in Table 3, which were employed 
to obtain the main four QPMs (Table 2). According to these results, it becomes clear that 
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the PLS-DA model is able to correctly classify new samples in the corresponding class 
with 100% confidence. 

 
Figure 6. Classification plot for PLS-discriminant analysis (DA) validation results. The solid red 
line represents the threshold decision value (0.5) and the dotted red lines the uncertainty region. 

Table 3. Classification of the validation samples using PLS-DA. 

 
TB: target class (White Tequila ‘100% agave’); TBM: non-target class (White Tequila ‘mixed’). 

In addition, twenty-two other QPMs reported in literature were calculated for a more 
comprehensive evaluation of the models (Table 4). 

Table 4. Quality performance metrics (QPM) summary chart of the selected models. 

Quality Metrics 
PLS-DA SIMCA 

TB TBM TB TBM 
Inconclusive rate (IR) 0.00 0.00 0.00 0.00 

Sensitivity (SENS) 1.00 1.00 0.89 0.67 
Specificity (SPEC) 1.00 1.00 0.67 0.89 

False positive rate (FPR) 0.00 0.00 0.33 0.11 
False negative rate (FNR) 0.00 0.00 0.11 0.33 

Positive predictive value (precision) (PPV) 1.00 1.00 1.00 1.00 
Negative predictive value (NPV) 1.00 1.00 1.00 1.00 

Youden index (YOUD) 1.00 1.00 0.56 0.56 
Positive likelihood rate (LR (+)) - - 2.67 6.00 

Negative likelihood rate (LR (−)) 0.00 0.00 0.17 0.38 
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Classification odds ratio (COR) - - 16.00 16.00 
F-measure (F) 1.00 1.00 0.94 0.80 

Discriminant power (DP) - - 0.66 0.66 
Efficiency (or accuracy) (EFFIC) 1.00 1.00 0.80 0.80 

Misclassification rate (MR) 0.00 0.00 0.20 0.20 
AUC (Area under the receiver operating curve) 1.00 1.00 0.78 0.78 

Gini coefficient (Gini) 1.00 1.00 0.56 0.56 
G-mean (GM) 1.00 1.00 0.77 0.77 

Matthews correlation coefficient (MCC) 1.00 1.00 0.77 0.77 
Change agreement rate (CAR) 0.52 0.52 0.43 0.43 

Change error rate (CER) 0.48 0.48 0.48 0.48 
Kappa coefficient (KAPPA) 1.00 1.00 0.65 0.65 

PROB (1/1) 1.00 1.00 0.80 0.80 
PROB (2/2) 1.00 1.00 0.80 0.80 
PROB (1/2) 0.00 0.00 0.20 0.20 
PROB (2/1) 0.00 0.00 0.20 0.20 

The hyphen “-” indicates that the performance feature cannot be determined since involves a divi-
sion between zero. 

The conclusions derived from the QPMs results shown in Table 4 are in agreement 
with the typical four main QPMs (Table 3). They all indicate that the PLS-DA model is 
capable to classify unknowns better than SIMCA since the parameters that report good 
quality of the model and/or good probability of classification (i.e., SENS, SPEC, PPV, NPV, 
YOUD, EFFIC, AUC, MCC, and Bayes’ conditional probabilities 1/1 and 2/2) are equal or 
close to one. For instance, YOUD indicates that PLS-DA model is more reliable for classi-
fying both classes than SIMCA model; EFFIC shows the ratio between agreements (i.e., 
correct assignations) and the total number of objects, which is better for PLS-DA than for 
SIMCA; and AUC demonstrates that PLS-DA is better avoiding errors during classifica-
tion than SIMCA. 

Moreover, the parameters that indicate bad quality/probability of misclassification 
(i.e., FPR, FNR, MR, and Bayes’ conditional probabilities 1/2 and 2/1) are low or equal to 
zero. In this sense, MR displays the ratio between errors (i.e., wrong assignations) and the 
total number of objects, which is lower for PLS-DA than for SIMCA. PROB (1/2) refers to 
the probability of an object being assigned to TBM class when it belongs to TB, which is 
better for PLS-DA than for SIMCA; and analogously for PROB (2/1). 

Furthermore, SIMCA was not able to classify three samples in any class (TB 04, 
TBM41, and TBM73), considering them as not recognized. All QPMs for PLS-DA were 
equal to 1.00 with no inconclusive samples. Every Tequila sample of the ‘100% agave’ (TB) 
category was correctly classified (probability = 1), as well as the ‘mixed’ (TBM) ones (prob-
ability = 0). Noteworthy, no ‘mixed’ Tequila sample was included in the ‘100% agave’ 
category, which is a very positive and relevant result. Additional studies in which partic-
ularly conflictive products (sold as low-price Tequilas in urban and rural marketplaces) 
and potential fraudulent samples are considered, are under development. 

4. Conclusions 
The current research presented the development of an analytical methodology based 

on the combination of a common but powerful screening sensor, an FTIR instrument, and 
multivariate classification tools to authenticate two commercial categories of white Te-
quila (‘100% agave’ and ‘mixed’). The mid-IR spectra of a broad collection of commercial 
samples were collected and baseline corrected according to their classes. However, this 
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posed a problem when studying truly unknown samples because it is not obvious how to 
baseline correct their spectra. 

Therefore, a low-level data fusion approach was considered (to the best of our 
knowledge, this is the first study which involves data fusion to authenticate Tequilas). In 
this context, the solution was to develop multivariate models based on fused data gath-
ered from diverse baseline corrections since differences between both classes are taken 
into consideration. This avoided subjective decisions when trying to select the ‘correct’ 
baseline correction for unknowns. In this sense, the results presented here demonstrated 
that multivariate discrimination models addressed the authentication of the two Tequila 
categories. Noteworthy, no ‘mixed’ Tequila sample was included in the ‘100% agave’ cat-
egory, which is a very positive and relevant result. The model finally selected was even 
able to cope with two complex samples declared as ‘100% agave’ which were not obvi-
ously classified as such. 

This sensor-based methodology is fast, cheap, non-destructive, and it allows for po-
tential on-line/at-line implementations, and it can be straightforwardly implemented in 
routine quality control laboratories. The use of data fusion approaches to develop the mul-
tivariate authentication models for Tequila is highly recommended not only for the indus-
try but for regulatory organizations. 
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