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Abstract
Melanins are widely distributed biopolymers that exhibit important biological activities. However, fruit melanins have been 
scarcely studied. In this work, the antibiofilm, cellular antioxidant, anti-inflammatory, immunomodulatory, cytotoxic, and 
antimutagenic activities of soluble melanins (SMs) isolated from the Randia echinocarpa fruit (papache) were evaluated. 
The SMs inhibited biofilm formation in Staphylococcus aureus MDR and ATCC 43300 up to 60% at 1000 µg/mL; they 
presented a cellular antioxidant activity (60.02%) at 50 µg/mL, were immunomodulatory by increasing the peripheral 
blood mononuclear cells (PBMC) proliferation index (1.09 at 50 μg/mL), and inhibited HeLa cell proliferation by 77.39% 
 (IC50 = 9.34 µg/mL). SMs were neither toxic nor mutagenic in the Salmonella Typhimurium YG1024 strain and inhibited 
the 1-nitropyrene mutagenicity by 30.2%. The biological activities of papache SMs support their potential to be used in 
nutraceutical and pharmaceutical formulations.

Keywords Randia echinocarpa · Antibiofilm activity · Cellular antioxidant activity · Immunomodulatory activity · 
Antitumor activity · Antimutagenic activity

Introduction

Randia echinocarpa Moc. and Sessé ex DC. (Rubiaceae) is 
native to Mexico, commonly known in the northwest State 
of Sinaloa as papache, used in Mexican traditional medicine 
to treat diverse diseases/symptoms (e.g., cancer, malaria, 
diabetes, peptic ulcers, and diseases of kidney, circulatory 
system, and lung), and several biological activities of the 
plant and its fruit have been described (e.g., antibacterial, 
nematicide, antioxidant, cicatrizing, antimutagenic, 
proliferative, diuretic, toxicity) (Ojeda-Ayala et al. 2022). 
The papache fruit presents a dark-flesh color due to melanins 
(Cuevas-Juárez et al. 2014; Montes-Avila et al. 2018).

Melanins are high molecular weight complex 
biomolecules formed by the oxidation and polymerization 
of phenolic or indolic molecules and found in various 
living organisms, including humans, animals, plants, 
and microorganisms. They are classified into animal 
eumelanin (black pigments) and pheomelanin (red and 
brown pigments), and plant allomelanin or phytomelanin 
(brown and black) (Glagoleva et al. 2020; El-Naggar and 
Saber 2022). Melanins have a wide range of biological 
activities, including photoprotective, antioxidant, free 
radical scavenging, anti-inflammatory, immunomodulatory, 
antimicrobial, and anticancer, and provide hepatic, 
gastrointestinal, and hypoglycemic benefits (El-Obeid et al. 
2016). However, in comparison with those in animals and 
microorganisms, melanins in plants/fruits have been less 
studied (Hung et al. 2003; Huang et al. 2011; Cuevas-Juárez 
et al. 2014; Montes-Avila et al. 2018; Pío-León et al. 2018; 
Gil-Avilés et al. 2019; Al-Obeed et al. 2020; Alam et al. 
2022).

Pure melanins are generally known for their insolubility. 
However, melanins in living organisms interact with 
other biomolecules, such as carbohydrates and proteins, 
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increasing their solubility in polar solvents; such 
complexes are named soluble melanins (SMs) (Cuevas-
Juárez et al. 2014). Papache fruit has SMs, and solubility 
is associated with the formation of conjugates of melanins 
with organic acids and carbohydrates (Montes-Avila et al. 
2022). Moreover, the insoluble melanins of papache fruit 
present high antioxidant and immunomodulatory activities 
(Montes-Avila et al. 2018), whereas the SMs have high 
antioxidant and α‐glucosidase inhibitory values (Cuevas-
Juárez et al. 2014); besides, SMs are innocuous in Balb/C 
mice (Gil-Avilés et al. 2019). The aim of this study is 
to evaluate the antibiofilm, cellular antioxidant, anti-
inflammatory, immunomodulatory, cellular cytotoxic, 
and antimutagenic activities of the soluble melanins of 
papache fruit. This characterization will contribute to 
establishing the potential of R. echinocarpa fruit as a 
source of soluble melanins to be used in nutraceutical and 
pharmaceutical formulations, which would help in the 
management and sustainable use of this floristic resource 
from Mexico.

Materials and Methods

Plant material

Ripe fruit of Randia echinocarpa Sessé et Mociño was 
collected from the municipalities of Culiacan, Badiraguato, 
and Salvador Alvarado, all in Sinaloa, Mexico. Dr. Rito 
Vega-Aviña, a professor at the Agronomy School of the 
Autonomous University of Sinaloa, identified the plant 
species. A voucher specimen deposited in the herbarium 
of the Agronomy School has the number 6307. The edible 
pulp of R. echinocarpa without woody peels and seeds 
was frozen and freeze-dried. The lyophilized sample was 
milled to obtain a powder that passed through a no. 40 
sieve; then, it was stored at − 20 °C until use.

Extraction and purification of soluble melanins 
(SMs)

Soluble melanins were extracted as previously reported 
(Cuevas-Juárez et al. 2014), with minor modifications. 
Fruit powder (5 g) and boiling deionized water (100 mL) 
were mixed and stirred for 30 min. The suspension was 
centrifuged (20,000 × g/15 min/20–25 °C); the recovered 
supernatant was frozen at − 80  °C and freeze-dried. 
The residue named impure SMs (0.5 g) was dissolved 
in distilled water (10 mL) and dialyzed against 300 mL 
of deionized water using a 12-kDa cellulose membrane. 
The water was changed twice a day for 4 days. Dialyzed 

samples were recovered and freeze-dried to obtain the 
SMs.

Antibiofilm activity

Bacterial biofilm formation was assayed using the 
crystal violet method on 96-well flat-bottom polystyrene 
microplates. Human pathogenic bacteria classified as 
multidrug-resistant and sensitive with different biofilm 
formation capacities were used: two Escherichia coli, five 
Staphylococcus aureus, and one Pseudomonas aeruginosa 
strains; these bacteria were four clinical isolates and four 
reference ATCC strains (Online Resource 1).

Inhibition of biofilm formation

A fresh bacterial culture (TSA/37 ºC/18–20 h) was used 
to prepare a suspension in saline solution (0.85% w/v), 
adjusting its turbidity to the 0.5 McFarland standard 
(1 ×  108 CFU/mL). The test inoculum (1 ×  106 CFU/mL) 
was prepared in TSB medium + 1% glucose, and 100 µL 
were deposited in each well. SMs (100 µL) at different 
concentrations (1000, 500, 100, 50 µg/mL) were added 
before the inoculum. The microplates were incubated 
(37 °C/24 h), and planktonic bacteria were removed. Wells 
were washed thrice with PBS (250 µL, pH = 7.2) and dried 
in an inverted position. The adhered bacteria were fixed with 
methanol (150 µL, 15 min), stained with 1% crystal violet 
(150 µL, 15 min), the dye solution was removed, and the 
dye in excess was eliminated with three washes of sterile 
distilled water (250 µL). Once the microplate was dry, the 
dye adhered to the formed biofilm was eluted with 95% 
ethanol (150 µL), and the optical density (OD) at 540 nm 
was determined (Dolatabadi et al. 2018). The following 
controls were employed: growth, inoculum and solvent; 
blank, medium with extract; and sterility, medium with 
solvent. Each evaluation was performed in quadruplicate in 
three independent tests.

Biofilm eradication

Bacterial biofilm was formed (37 °C/24 h) as previously 
described. Then, non-adherent bacteria were removed by 
washing with PBS (750 µL), 200 µL of SMs at different 
concentrations (2000, 1000, 200, 100  µg/mL) were 
added to the formed biofilm, and it was incubated again 
(37  °C/24  h). Subsequently, washing (PBS), fixation 
(methanol), crystal violet staining, biofilm elution (95% 
ethanol), and determination of optical density (OD) at 
540 nm (Dolatabadi et al. 2018) were carried out. The 
following controls were employed: growth, inoculum 
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with solvent; blank, medium with extract; and sterility, 
medium with solvent. Three independent experiments were 
performed in quadruplicate (Mohammadi et al. 2019).

Biofilm metabolic activity

The metabolic activity of the biofilms formed in the absence 
and presence of SMs was determined using the XTT 
reduction assay. Biofilms were formed as described above 
and washed with PBS (150 µL) to remove non-adherent 
bacteria after and before SMs addition (2000–50  µg/ 
mL) for biofilm inhibition and biofilm eradication assays, 
respectively. Once dry, 100 µL of PBS and 20 µL of the 
XTT-PMS 1% solution (1  mg/mL) were added to each 
well of the plate. The plates were incubated in the dark 
(37 °C/3 h), and the absorbance of the reaction mixture 
was measured at 450 nm. The employed controls were the 
following: growth, inoculum with solvent; blank, medium 
with extract; and sterility, medium with solvent. Each assay 
was performed in duplicate in two independent assays (Costa 
et al. 2017).

Light microscopy of biofilm

The effect of SMs on inhibiting and eradicating bacterial 
biofilms was observed under an optical microscope. The 
test inoculum was added to 24-well polystyrene plates 
containing 400 µL TSB medium + 1% glucose and sterile 
round glass coverslips (12 mm) in the absence and presence 
of SM at different concentrations (2000–50 µg/ mL). The 
plates were incubated (37 ºC/24 h), and the biofilms adhered 
to the coverslips were washed and stained as previously 
described. Biofilms were visualized at 40X (Ali et al. 2016; 
Kannappan et al. 2017; Qais et al. 2019).

Cellular antioxidant activity in red blood cells 
(CAA‑RBC)

The antioxidant activity of SM was evaluated according 
to the methodology reported by Blasa et  al. (2011) 
with some modifications. A blood sample (3 mL) from 
apparently healthy volunteer donors was centrifuged 
(10  min/2500  rpm). The red blood cells (RBC) were 
recovered, washed, and resuspended with PBS (pH 7.4, 
4 °C, 1:20 v/v). The RBC suspension was incubated (37 °C/ 
200 rpm/ 30 min) with 250 µL DCFH-DA (140 µM in PBS) 
and 250 µL SMs (50 µg/mL) or quercetin standard (10 µM); 
the mixture was centrifuged (2500 rpm/10 min), and the 
pellet was washed and diluted (1:10 v/v) with PBS (pH 7.4, 
4 °C). Subsequently, 200 µL of the cell suspension and 50 µL 
of AAPH (500 µM) were mixed, and fluorescence (485 nm 
ex and 538 nm em) was measured every 2 min for 10 h. 
Two assays were performed in triplicate, including a control 

(no samples) and a blank (no samples or AAPH). The 
antioxidant capacity (CAOx) of the samples was calculated 
with the formula: CAOx = 100- (ʃSA/ʃCA) × 100, where ʃSA 
is the integration of the area under the curve of the sample 
and ʃCA is the integration of the area under the curve of the 
control (Blasa et al. 2011). The apparently healthy volunteer 
donors gave informed consent before being included in the 
study.

In vitro anti‑inflammatory activity

The human red blood cell (HRBC) membrane stabilization 
assay was used (Yesmin et al. 2020). Anti-inflammatory 
activity was determined by measuring the ability of SMs 
(400 µg/mL) to prevent hemolysis induced by heat or by a 
hypotonic medium. Diclofenac sodium (25–1500 µg/mL) 
was used as a positive control. The percentage of inhibition 
of hemolysis was calculated according to the equation: % 
inhibition of hemolysis = 100 ×

(

[1] −

[

OD2−OD1

OD3−OD1

])

. where: 
OD1 = Optical density of the unheated/isotonic sample, 
OD2 = Optical density of the heated/hypotonic sample, and 
OD3 = Optical density of the heated/hypotonic control. 
Samples were tested at concentrations that did not cause 
hemolysis. Two independent experiments were performed 
in triplicate.

In vitro immunomodulatory activity

The model of peripheral blood mononuclear cells (PBMC) 
was used. PBMC were isolated by density gradient from 
human blood samples of apparently healthy volunteers 
according to Goyal et al. (2019) and Jenny et al. (2011) with 
slight modifications. The recovered cells were suspended in 
1 mL of RPMI-1640 medium supplemented with 10% (v/v) 
of FBS and 0.5% (v/v) of antibiotic–antimycotic. PBMC at 
a density of 2 ×  105 cells/well were treated with SMs (50 
and 100 µg/mL), negative control (DMSO at 10% v/v), or 
positive control (10 µg/mL, phytohemagglutinin PHA or 
lipopolysaccharide LPS). The mixtures were incubated in 
a humidified atmosphere (37 °C/5%  CO2/24 h), centrifuged 
(1500 rpm/5 min), and the supernatant was removed. Cell 
proliferation was measured by the MTT method, reading 
the absorbance at 540 nm. Cell growth was reported as the 
proliferation index according to the formula: Proliferation 
index = (A/B). Where: A and B are the absorbance values 
for the treated and untreated cells, respectively. Two 
independent experiments were performed in triplicate.

Cellular cytotoxic activity

HeLa cervical cancer cells were used following the 
methodology reported by Malich et al. (1997) with some 
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modifications. Cells were grown in DMEM medium 
until 90–95% confluency. Cell viability was determined 
using trypan blue dye (4% w/v). In a 96-well flat-bottom 
microplate, HeLa cells (12 ×  103 cells/well) were incubated 
(37 °C/5%  CO2/24 h) in DMEM medium supplemented with 
FBS (10% v/v). Subsequently, SMs were added at different 
concentrations (1–500  μg/mL), and the controls were 
Paclitaxel (positive) and DMSO 10% v/v (negative). The 
microplate was incubated (37 °C/5%  CO2/72 h), and 100 μL 
of MTS (5 mg/mL in DMEM) were added to the monolayer 
cells. The microplate was incubated again (40–60 min), 
and the absorbance was measured at 492 nm. The results 
were expressed as a mortality percentage and mean lethal 
concentration  (LC50). Two independent experiments were 
performed in triplicate.

Antimutagenic activity

The microsuspension assay of the Ames test was used (Kado 
et  al. 1983). Salmonella enterica serovar Typhimurium 
YG1024 was the tester strain, and 1-NP was the mutagen. 
Toxicity and mutagenicity were evaluated for SMs. Tester 
strain YG1024 was grown overnight (37  °C) in Oxoid 
Nutrient Broth No. 2 to approximately 1–2 ×  109 cells/mL 
and harvested by centrifugation (3000 × g/4 °C/10 min). 
Bacteria cells (1 ×  1010 cells/mL) were resuspended in ice-
cold PBS (0.15 M, pH 7.4) and ingredients were added in 
the following order to 10 × 100 mm sterile glass culture 
tubes kept on ice: 0.1 mL cocktail, 0.1 mL of bacteria 
(1 ×  1010 cells/mL PBS), 0.01 mL 1-NP (20 ng/tube) or 
0.005 mL of the SM (50 μg/tube), and 0.005 mL 1-NP 
(20 ng/tube). The mixture was incubated (37 °C/90 min) in 
the dark with vigorous shaking. The tubes were placed in 
an ice bath, removed one at a time, and 2 mL of molten 
top agar containing 90 nmol histidine/biotin was added. 
The combined solutions were vortex mixed and poured 
onto medium minimal Vogel-Boner plates. Plates were 
incubated (37  °C/48  h) in the dark, and the colonies 
were counted. Samples were tested in triplicate for two 
independent experiments. Strain markers and bacterial 
survival were routinely monitored for each experiment. 
The mutagen and all samples were dissolved in DMSO. 
Samples were sterilized by filtration (0.22 μm). Mutagenic 
index (MI) was calculated as the ratio of induced revertants 
by the evaluated substance to spontaneous revertants. The 
SMs were considered mutagenic if MI ≥ 2 and cytotoxic 
if MI ≤ 0.6 (Maron et  al. 1983; Fernandes et  al. 2003; 
Moreira-Rosa et  al. 2006). The antimutagenic activity 
was calculated as the inhibition percentage of mutagenic 
activity, % inhibition = (1 − A/B) × 100. Where: A = number 
of revertants per plate in the presence of SMs and mutagenic 
agent, and B = number of revertants per plate in the presence 
of the mutagenic agent.

Statistical analysis

All data were expressed as the means ± SD. They were 
analyzed by one- or two-way ANOVA, and significant 
differences (P ≤ 0.05) between the means were established 
by the Fisher or Bonferroni posttest. Also, a Probit analysis 
was performed. The statistical programs STAT GRA PHICS 
plus version 5.1 (Statistical Graphics Corporation™, USA), 
GraphPad Prism version 8.0.1 (GraphPad Software, USA), 
and Excel (Microsoft Corporation, USA) were used.

Results and discussion

Antibiofilm activity

The SMs of papache fruit inhibited biofilm formation in 
S. aureus ATCC 43300, 3R, 4R, and 5R strains by more 
than 50% and up to 60% at a concentration of 1000 µg/mL 
(P < 0.05). At lower concentrations of SMs (100, 50 µg/
mL), an opposite effect was observed, with an increase in 
biofilm formation of up to 3 times in the clinical isolates 
(3R, 4R, and 5R) and 1.6 times in the reference strains 
(ATCC 43300 and 25,923) (Fig.  1). The antibiofilm 
activity of melanins, mainly of bacterial origin, has been 
previously reported. Melanin pigments (100 µg/mL) from 
actinobacteria Nocardiopsis inhibited up to 65.9% of the 
formation of Staphylococcus sp. biofilm (Kamarudheen et al. 
2019). Melanins (100 µg/mL) from Vibrio alginolyticus, 
Pseudomonas stutzeri, and Providencia rettgeri reduced 
37%-89.08% the formation of biofilms from foodborne 

Fig. 1  Optical density (OD) values in the evaluation of the inhibition 
of bacterial biofilm by papache soluble melanin (50–1000  µg/mL). 
The mean ± SD of three independent experiments with four replicates 
is plotted. * P < 0.05 versus the control group, employing the 
Bonferroni Test. (S.a. = Staphylococcus aureus; P.a. = Pseudomonas 
aeruginosa)
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strong biofilm-producing bacteria (Bacillus altitudinis, 
Pseudomonas aeruginosa, Staphylococcus warneri, and 
Bacillus sp.) (Kurian et al. 2015; Laxmi et al. 2016; Kurian 
et al. 2018). On the other hand, nanomelanins (30 μg/mL) 
of Pseudomonas sp. inhibited 71% of the formation of the 
S. aureus biofilm (Kiran et al. 2017). Regarding melanins 
of fungal origin, it was reported that Auricularia auricula 
melanin (80  μg/mL) inhibited biofilm formation of E. 
coli K-12, P. aeruginosa PAO1, and P. fluorescens up to 
71.3, 61.7, and 63.2%, respectively, in a concentration-
dependent manner (Bin et al. 2012). In the case of soluble 
melanins, Wang et al. (2019) reported that melanin pigments 
(512 µg/mL) from Streptomyces sp. showed antibiofilm 
activity against S. aureus and P. aeruginosa with inhibition 
percentages of up to 67.5% and 74.6%, respectively, 
generally resulting in lower inhibition percentages than 
insoluble melanins (79.2%-71.7%). Previous studies with 
soluble melanins from sources different from fruits showed 
inhibition rates of bacterial biofilm formation similar to 
those of papache SMs (Fig. 1). However, their concentrations 
were 10 times lower than those used in the present study. It 
is worth mentioning that most of the antibiofilm activity 
studies have used melanins from bacteria or fungi, some 
of them edible. Meanwhile, SMs isolated from the R. 
echinocarpa fruit were evaluated in the present work.

Regarding the E. coli strain ATCC 25922 (weak biofilm 
former), there was a non-significant inhibition in the biofilm 
formation capacity at all SMs concentrations compared to 
the control. The clinical isolate E. coli M51-3 (non-biofilm-
forming) was not affected by the SMs. In the case of P. 
aeruginosa ATCC 27853 (strong biofilm former), there was 
a non-significant increase in generalized biofilm formation 
compared to the control at all SMs concentrations evaluated 
(Fig. 1). These results in Gram-negative bacteria agree with 
those reported for melanin pigments (100 µg/mL) from 
actinobacteria Nocardiopsis, where no effect was observed 
on P. aeruginosa (Kamarudheen et al. 2019). However, the 
results contrast with those reported from bacteria (Vibrio 
alginolyticus, Pseudomonas stutzeri, Providencia rettgeri, 
and Streptomyces sp.) and melanin of the fungus Auricularia 
auricula with inhibition percentages of 56% to 79% (Bin 
et al. 2012; Kurian et al. 2015; Laxmi et al. 2016; Kurian 
et al. 2018; Wang et al. 2019). Also, they contrast with the 
in silico study of Venkatesh et al. (2018), where human 
oral mucosa containing melanin presented antibiofilm 
properties by acting as an antagonist of quorum sensing in 
P. aeruginosa containing protein LasA. Previously, SMs of 
papache did not inhibit the growth of E. coli ATCC 25922 
and P. aeruginosa ATCC 27853 up to 5000 µg/mL (Montes-
Avila et al. 2022); therefore, the evaluations performed in 
the present study were at sub-inhibitory concentrations 
(< 2000 µg/mL). It has been reported that the formation of 
biofilm is induced by exposing bacteria to sub-inhibitory 

concentrations of various antimicrobials, which is related 
to changes in their genotype and phenotype caused by the 
stress, as well as the release of the contents of the dead 
sensitive microbial cells that which can act as a substrate for 
biofilm formation (Kaplan 2011; Bernardi et al. 2021). This 
induction of biofilm formation is similar to that observed 
using lower concentrations (100 and 50 µg/mL) of papache 
SMs.

The SMs of papache do not affect the bacterial viability 
in the biofilm, as demonstrated in the case of E. coli and P. 
aeruginosa, where no significant effect on biofilm inhibition 
was observed, evidenced by the crystal violet staining 
method (Online Resource 2). However, the microscope 
visualization of the formed biofilms allowed us to appreciate 
the effect of the papache SMs in inhibiting the biofilm and 
bacterial viability. An increase in biofilm formation was 
observed in the S. aureus strains at low concentrations 
of SMs and an inhibition effect at higher concentrations, 
clearly present in the ATCC 43300, 3R, 4R, and 5R strains 
that share the characteristic of being MRSA compared to 
the non-MRSA strain ATCC 25923 (Fig. 2). This behavior 
has been reported when comparing resistant and sensitive 
strains or clinical isolates and reference strains (Piechota 
et al. 2018; Mahmoudi et al. 2019; Hosseini et al. 2020; 
Leshem et al. 2022), indicating that the ability to form a 
biofilm is a resistance mechanism of the strains to survive 
in the presence of some antimicrobial since the structure and 
characteristics of the biofilm formed provides protection: 
e.g., extracellular polymeric substances (EPS) reduce the 
penetration of antimicrobials, the bacterial growth rate is 
reduced, presence of persistent cells, activation of genes 
related to biofilm protection (Singh et al. 2021). In the case 
of E. coli strains, no effect on M51-3 and a slight decrease 
in ATCC 25922 biofilm viability was observed, which 
corresponded with the biofilm inhibition results. Regarding 
P. aeruginosa, non-significant increases in biofilm formation 
were observed compared to the control at all concentrations 
tested (Fig. 2, Online Resource 3).

In brief, no biofilm eradication effect was observed for any 
SMs concentrations evaluated. In contrast, SMs promoted 
biofilm formation by the strains S. aureus and P. aeruginosa, 
resulting in more biofilm at higher concentrations (2000, 
1000 µg/mL). In the case of E. coli, there are no relevant 
changes in eradication (Fig.  3), corroborated by the 
metabolic activity evaluation (Online Resource 4) and the 
light microscope images (Fig. 4, Online Resource 5).

Cellular antioxidant activity

The SMs showed a cellular antioxidant activity (60.02%) 
similar to that of the quercetin control (62.86%); however, 
the concentration of quercetin evaluated was 16.6 times 
lower than SMs (Table 1). Previous studies have shown 
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the good antioxidant activity in vitro of R. echinocarpa 
melanins (µmol TE/g): the insoluble melanins have higher 
values (ABTS = 835.7; FRAP = 709.64) than those of 
the soluble melanins (ABTS = 719.5; FRAP = 351.77). 
Besides, low concentrations of insoluble melanins (10 
and 100 µg/mL) protect Saccharomyces cerevisiae from 
 H2O2 damage (Cuevas-Juárez et al. 2014; Montes-Avila 
et al. 2018). Similarly, melanins of fungi (Arun et al. 
2015; Barretto et al. 2020; Ben Tahar et al. 2020; Wold 
et al. 2020; Xu et al. 2020; Oh et al. 2021; Li et al. 2022; 
Surendirakumar et  al. 2022), bacteria (Kurian et  al. 
2015; Wang et al. 2019; Bayram et al. 2020; Ferraz et al. 
2021) and fruits (Cuevas-Juárez et  al. 2014; Montes-
Avila et al. 2018; Pío-León et al. 2018; Alam et al. 2022) 
show very good antioxidant activity in vitro. However, 
the evidence in cellular models is scarce; melanins 
isolated from Sporisorium reilianum (200–400 µg/mL) 
protected HepG2 cells from  H2O2-induced oxidative 
damage by reducing ROS, MDA, and LDH levels (Fu 
et  al. 2022); Auricularia auricula melanins (1.2  mg/
mL) protected L02 cells by inhibiting the increase in 

Fig. 2  Optical microscopy 
(40X) of the effect of 
papache soluble melanins 
in the inhibition of bacterial 
biofilm formation (Carl Zeiss 
microscope Primostar model)

Soluble melanin concentration (µg/mL)
Control 1000 500 100 50

E. coli
ATCC 
25922

S. aureus
ATCC 
43300

S. aureus
ATCC 
25923

P.
aeruginos
a ATCC 
27853
E. coli
M51-3 

S. aureus
3R

S. aureus
4R

S. aureus
5R

Fig. 3  Optical density (OD) values in the evaluation of the 
eradication of bacterial biofilm by papache soluble melanin (100–
2000  µg/mL). The mean ± SD of three independent experiments 
with four replicates is plotted. * P < 0.05 versus the control group, 
employing the Bonferroni Test. (S.a. = Staphylococcus aureus; 
P.a. = Pseudomonas aeruginosa)
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ROS induced with alcohol (Hou et al. 2021) and from 
oxidative injury induced by  H2O2 (1.6  mg/mL) (Liu 
et  al. 2019). Although the cellular models used are 
different, it is evident that melanins have good cellular 
antioxidant activity, highlighting the papache SMs that 

showed a good percentage of antioxidant capacity at 
concentrations considerably lower than those reported by 
other authors. In the evaluation carried out, SMs penetrate 
the erythrocyte and inactivate peroxyl radicals, an effect 
related to the characteristic of scavenging and quenching 

Fig. 4  Optical microscopy 
(40X) of the effect of papache 
soluble melanins in the 
eradication of bacterial biofilm 
(NIKON Eclipse model E200 
microscope)

Soluble melanins concentration (µg/mL)
Cepa Control 2000 1000 200 100
E. coli
ATCC 
25922

S. aureus
ATCC 
43300

S. aureus
ATCC 
25923

P.
aeruginos
a ATCC 
27853
E. coli
M51-3 

S. aureus
3R

S. aureus
4R

S. aureus
5R

Table 1  Biological activities of 
soluble melanins obtained from 
papache fruit

aSM evaluated at 50 μg/mL and quercetin control at 3.01 μg/mL (10 μM)
bNA: no activity; SM evaluated at 400 μg/mL and diclofenac sodium control at 25–1500 μg/mL
cSM evaluated at 50 and 100 μg/mL and PHA and LPS controls at 10 μg/mL
dSM evaluated from 1–500 μg/mL. f Paclitaxel IC50 = 8 nM, 2.56 ng/mL
eSpontaneous revertants: 19.7 ± 1.53 revertants/plate

Biological Activity Soluble Melanins Control

Cellular antioxidant (%) a 60.02 ± 0.75 62.86 ± 0.35
Anti-inflammatory (IC50, μg/mL) b NA 118.5 ± 4.31 (Heat)/ 

147.6 ± 5.66 
(Hypotonic)

Immunomodulatory (proliferation index) c 1.09 ± 0.12 / 1.10 ± 0.18 1.74 (PHA), 0.67 (LPS)
Cellular cytotoxic (IC50, μg/mL) d 9.34 2.56f
Antimutagenic (inhibition %) e 30.2 ± 7.09 -
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of superoxide anions and singlet oxygen species, as 
well as to the reducing capacity of the phenol-quinone 
structure of melanins (Cuevas-Juárez et al. 2014; Montes-
Avila et al. 2018; Hou et al. 2021; Alam et al. 2022; Fu 
et al. 2022).

In vitro anti‑inflammatory activity

The SMs of papache were inactive in stabilizing the 
red blood cell membrane against heat-induced stress or 
hypotonicity up to the highest concentration tested (400 µg/
mL). However, the anti-inflammatory activity of melanins 
evaluated has been demonstrated using other methods. 
Bacterial melanins (100 μg/mL) from Vibrio alginolyticus 
BTKKS3, Pseudomonas stutzeri BTCZ10, Providencia 
rettgeri BTKKS1, and Bacillus spp. BTCZ31 inhibited in 
a dose-dependent manner the expression of inflammatory 
enzymes (i.e., COX, LOX, MPO, and NO synthase) in 
RAW 264.7 cells (Kurian et al. 2015; Kurian et al. 2015; 
Kurian et  al. 2017; Kurian et  al. 2018). Similarly, the 
soluble melanins of Bacillus thuringiensis subsp. galleries 
K1 decrease in RAW 264.7 cell line the levels of nitric 
oxide, prostaglandin E2, and proinflammatory cytokines, 
including interleukin IL-6 and IL-1b (Petrosyan et  al. 
2019). On the other hand, melanins produced by the yeast 
Nadsoniella nigra reduced the content of IL-1b in rat serum 
and restored the level of anti-inflammatory cytokines (IL-
10, TGF-b) to the control values (Belemets et al. 2017). 
Moreover, melanins isolated from Inonotus obliquus reduced 
nitric oxide production in primary murine macrophages 
(Wold et al. 2020). Similarly, the melanins extracted from 
Cryptococcus rajasthanensis have anti-inflammatory activity 
in the inhibition assay of albumin protein denaturation 
 (IC50 = 40.50 µg/mL) (Barretto et al. 2020). Besides, the 
topical treatment with a 2.5% solution of the herbal Nigella 
sativa melanin inhibits the swelling induced by formalin in 
the rat-paw edema (El-Obeid et al. 2016). Thus, there is 
good evidence of the anti-inflammatory activity of soluble 
and insoluble melanins from different origins, which is 
attributed to the presence of phenolic groups and their 
antioxidant and free radicals scavenging actions that can 
help in reducing the inflammatory response (El-Obeid et al. 
2016; Belemets et al. 2017; Barretto et al. 2020). Despite 
the good antioxidant activity of papache SMs, they did not 
show anti-inflammatory activity in the assay tested, and it 
is necessary to evaluate this activity using other methods.

In vitro immunomodulatory activity

The PBMC proliferation indices of the SMs (1.09 at 50 μg/
mL and 1.10 at 100 μg/mL) were lower than that of the 
PHA control (1.74) but higher than that of LPS (0.67) 
(Table 1). The immunomodulatory activity of insoluble 

melanins (50 µg/mL) from R. echinocarpa was previously 
reported in mouse splenocytes with a proliferation index 
of 1.37 (Montes-Avila et al. 2018), a value higher than 
that reported for SM of the same fruit in the present work. 
The enhancement and modulation of the immune system 
by natural melanins have been reviewed (ElObeid et al. 
2017). Likewise, it was reported that Lachnum singerianum 
melanins, modified with histidine to increase their solubility, 
repressed tumor growth through activation of the immune 
response, improved the levels of SOD, CAT, IL-2, and 
TNF-α, and reduced the level of MDA (Ye et al. 2019). On 
the other hand, solubilized synthetic melanins suppressed 
the cytokine and reactive oxygen species production in 
macrophages stimulated by fungal components (Tajima 
et al. 2019). Moreover, Nigella sativa melanins stimulate 
IL-1β production in monocytes and THP-1 cells (El-Obeid 
et al. 2021). Immunomodulation is a broad term that refers 
to any changes in the immune response. It may involve 
induction, expression, amplification, or inhibition of any 
part or phase in the immune response (Venkatalakshmi 
et al. 2016). Melanins have both an immunostimulatory and 
an immunosuppressive effect, which has allowed them to 
be considered a promising tool in cancer therapy and may 
be adjuvants in treating other chronic diseases (Cuzzubbo 
et al. 2021; Marcovici et al. 2022). According to Liu et al. 
(2021), melanin interacts with the immune system through 
diverse pathways, reducing the effectiveness of phagocytic 
cells, binding effector molecules and antifungals, and 
modifying complement and antibody responses. Some 
plant phytochemicals, including some from fruits, have 
shown potential immunostimulant activity (Venkatalakshmi 
et  al. 2016; Maheshwari et  al. 2022). According to the 
results of the present study, the SMs could be considered 
immunomodulatory agents, specifically immunostimulatory; 
an activity associated with the phenolic groups in the 
melanin structure (Gil-Avilés et al. 2019).

Cellular cytotoxic activity (antitumor activity 
on human cancer cell lines)

The SMs inhibited HeLa cell proliferation by 77.39% at 
100 µg/mL  (IC50 = 9.34 µg/mL) (Table 1). Similar results 
have been reported for insoluble melanins from Streptomyces 
parvus (20–5 µM), reaching values in the range of 14.28%-
97.14%  (IC50 = 10 µM) (Bayram et al. 2020). On the other 
hand, the results of SMs of papache contrast with those 
reported for insoluble melanins of Pseudomonas putida 
and Sepia officinalis that did not show a cytotoxic effect 
against HeLa-Kyoto cells  (IC50 = 2.5 mg/mL), considering 
0.1 mg/mL the established limit of toxicity for human cell 
lines for a mixture of natural compounds (Ferraz et  al. 
2021). Several studies of fungal and bacterial melanins have 
shown their cytotoxic effect on other carcinoma cell lines 
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(e.g., A549, SK-MEL-28, DLA, EAC, HFB4, Hep2 cells) 
(Arun et al. 2015; El-Naggar et al. 2017; Barretto et al. 2020; 
Surendirakumar et al. 2022). Moreover, other reports have 
demonstrated that melanins are non-toxic substances against 
various normal non-cancerous cell lines (e.g., NIH3T3, 
HaCaT, WI-38, WISH, CRL-1696b, L929, HUVEC) 
(Kurian et al. 2015; de Cassia Ribeiro Goncalves et al. 
2016; El-Naggar et al. 2017; Kurian et al. 2017; Kurian et al. 
2018; Ben Tahar et al. 2020; Liu et al. 2020). Regarding the 
cytotoxicity of soluble melanins, Hou et al. (2021) reported 
that Auricularia auricula melanins (1.6 mg/mL) are non-
cytotoxic in normal human liver cells (L02). Besides, Wold 
et al. (2020) show that melanins of Inonotus obliquus are 
innocuous  (IC50 > 50 µg/mL) in the human cancer cell lines 
NCI-H460 (lung carcinoma) and HT29-MTX (methotrexate-
resistant colon adenocarcinoma). In the same context, 
soluble melanin produced by Streptomyces glaucescens 
showed potent cytotoxic activity against the HFB4 skin 
cancer cell line (81.3% at 100 µg/mL;  IC50 = 16.34 µg/mL) 
and less cytotoxicity against normal non-cancerous-cells 
(human lung fibroblast WI-38,  IC50 = 37.05 µg/mL; human 
amnion WISH,  IC50 = 48.07 µg/mL) (El-Naggar et al. 2017). 
In the case of melanins obtained from plants or fruits, herbal 
melanins isolated from seed coats of Nigella sativa inhibited 
the proliferation of the colorectal adenocarcinoma HT29 and 
mCRC SW620 cell lines suggesting herbal melanins as a 
promising natural-based drug for the treatment of colorectal 
cancer (Al-Obeed et al. 2020).

According to El-Abd et  al. (2022), compounds with 
 IC50 values (µg/mL) in the ranges of 1–10, 11–20, 21–50, 
and 51–100 have very strong, strong, moderate, and weak 
cytotoxicity activity, respectively. Therefore, SM were 
strong cytotoxic agents  (IC50 = 9.34 µg/mL) and can be 
considered possible natural agents for treating cancer 
as antitumor agent and used as a delivery nanoplatform 
(Cuzzubbo et al. 2021; Marcovici et al. 2022). In addition, 
papache SMs are harmless in acute and subacute toxicity 
tests in Balb/C mice (Gil-Avilés et al. 2019) and against 
Artemia salina (Montes-Avila et al. 2022). However, Andoh 
et al. (2022) recently mentioned that the safety of melanin 
as a food additive should be re-evaluated because it inhibits 
the growth of silkworm larvae.

Antimutagenic activity

The antimutagenic properties of medicinal plants are 
important for discovering new and effective preventive 
agents for mutations-related diseases (Makhafola et  al. 
2016). The SMs (50  µg/tube) showed a mutagenicity 
index (MI) of 0.78 ± 0.089 (spontaneous revertants/
plate = 18.3 ± 0.58) in the S. Typhimurium YG1024 strain. 
Thus, SMs were neither toxic (MI ≤ 0.6) nor mutagenic 
(MI ≥ 2.0) and presented a 30.2% inhibition of the 1-NP 

mutagenicity. There are few reports about the mutagenic/
antimutagenic activity of melanins. de Cassia Ribeiro 
Goncalves et al. (2016) reported that melanins obtained 
from Aspergillus nidulans (1 g/plate) are not mutagenic 
in S. Typhimurium strains (TA97a, TA98, TA100, and 
TA102), which agrees with our results. On the other hand, 
Jong-Kyu et al. (1995) reported that Bacillus licheniformis 
SSA3 synthesizes a water-soluble dark brown melanin-
type pigment, which inhibits up to 41% of the mutagenicity 
(10 µg/plate) induced by aflatoxin B1 in S. Typhimurium 
TA100 strain. Likewise, tea melanins have been reported 
to protect DNA from hydrazine-induced damage (Hung 
et al. 2003). Regarding the Randia echinocarpa fruit, it 
was previously shown that an aqueous extract inhibits 
the mutagenicity of 1-NP on S. Typhimurium YG1024 
strain, acting by desmutagenic (damage prevention) and 
bioantimutagenic (damage repair) mechanisms (Santos-
Cervantes et al. 2007); later, it was demonstrated that a 
methanol extract was an antimutagen in the same model, 
demonstrating that β-sitosterol and the acids linoleic and 
palmitic are the responsible compounds (Cano-Campos et al. 
2011). In this regard, antioxidants can remove ROS before 
these react with DNA and result in a mutation (Sloczynska 
et  al. 2014). This phenomenon corresponds with the 
correlation reported between antioxidant activity and the 
phenolic compounds content with the antimutagenicity 
of plant extracts (Makhafola et al. 2016). Papache SMs 
showed good antioxidant activity associated with their 
phenol-quinone structure, which could also be related to 
antimutagenic activity.

Conclusion

This study evaluated the antibiofilm, cellular antioxidant, 
anti-inflammatory, immunomodulatory, cellular cytotoxic, 
and antimutagenic activities of the soluble melanins 
of papache fruit. The obtained results demonstrate that 
the soluble melanins of papache fruit present biological 
activities relevant to human health: inhibits biofilm 
formation in multidrug-resistant bacteria; as an antioxidant 
in red blood cells, penetrate the erythrocyte and inactivate 
peroxyl radicals; increases the peripheral blood mononuclear 
cells proliferation index being immunomodulator; inhibits 
HeLa cell proliferation; and are not either toxic or mutagenic 
in the Ames assay. These characteristics make the soluble 
melanins of papache fruit a potential ingredient for 
nutraceutical and pharmaceutical formulations to prevent or 
treat chronic degenerative diseases. These findings should 
support the sustainable management and utilization of R. 
echinocarpa fruit. However, future studies should further 
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investigate the biological activities of soluble melanins of 
papache in vivo.
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