
Vol.:(0123456789)1 3

Journal of Applied Phycology 
https://doi.org/10.1007/s10811-022-02872-2

Enhancement of in‑vitro antioxidant properties and growth 
of amaranth seed sprouts treated with seaweed extracts

Idalia Osuna‑Ruíz1  · Ana Karen Dueñas Ledezma1 · Emmanuel Martínez‑Montaño1,2  · 
Jesús Aarón Salazar‑Leyva1  · Víctor Alfonso Rodríguez Tirado1 · Israel Benítez García1 

Received: 4 May 2022 / Revised and accepted: 10 November 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Amaranth sprouts contain phytochemicals with antioxidant activity that can neutralize free radicals that damage cellular 
macromolecules and change the stability of cells. In some seeds, phytochemicals content can be enhanced when these are 
imbibed with an aqueous seaweed extract (ASE). This study evaluated the effect of different concentrations (0.5, 1.0, and 
2.5 mg  mL−1) of Padina durvillei (TP) and Ulva lactuca (TU) extracts, with distilled water as a control treatment, on the 
growth of amaranth sprouts and content of total polyphenols (TPC), flavonoids (TFC), chlorophylls a and b (TCCa and 
TCCb), carotenoids (TCC), betacyanins (TBC) and, the antioxidant in-vitro activity of sprouts. There was a positive effect on 
hypocotyl and root growth of sprouts when treated with 2.5 mg  mL−1 and 0.5 mg  mL−1 TP and TU extracts, respectively. The 
highest antioxidant activity ocurred in sprouts grown in 0.5 mg  mL−1 TP. Sprouts treated with 0.5 mg  mL−1 ASE had a higher 
content of bioactive compounds compared to those treated with water, with the TP extract associated with the highest content 
of TPC (9.52 mg QE  g−1) and TFC (0.567 mg GAE  g−1), TCCa, and TCCb (0.09 and 0.12 mg  g−1, respectively), sprouts 
grown in 0.5 mg  mL−1 TU accumulated a higher TCC content (0.04 mg  g−1 dry sprout). Treatment with at 2.5 mg  mL−1 
TP and TU extracts produced sprouts that accumulated a higher TBC content in the cotyledons. These results demonstrated 
the biostimulant effect of ASEs when applied to amaranth seeds, and can be a suitable option for sustainable agriculture.

Keywords Antioxidant activity · Biostimulant · Carotenoids · Chlorophylls · Flavonoids · Phytochemicals · Polyphenols · 
Chlorophyceae · Phaeophyceae

Introduction

Current food consumption behaviors are increasingly 
focused on seeking alternatives that, in addition to nour-
ishing, provide a health benefit. Thus, micro-scale vegeta-
ble production and the popularity of sprouted seeds have 
increased for their high nutritional value and content of bio-
active phytochemicals (Rouphael et al. 2021).

According to the Commission Implementing Regula-
tion (EU) No 208/2013, sprouts are defined as "the product 
obtained from the germination of seeds and their development 

in water or another medium, collected before the development 
of true leaves and to be eaten whole, including the seed and 
grasse" (EU 2013). Sprouts provide more nutritional benefits 
compared to seeds or mature plants; they are rich in essen-
tial amino acids and fatty acids, simple sugars, and phyto-
chemicals such as polyphenols and terpenoids that exhibit 
antioxidant properties, and, when consumed as food, provide 
beneficial effects to human health (Wojdyło et al. 2020).

While many seeds of vegetables, cereals and herbs can 
be used to produce sprouts, the most popular being cereal 
and pseudo-cereal seeds. Amaranthus is a pseudo-cereal of 
high nutritional quality and a source of functional antioxi-
dant compounds like betacyanin, lutein, quercetin, niacin, 
vitamin C, tocopherols, and phenolic compounds (Odongo 
et al. 2018; Jimenez et al. 2019; Jimoh et al. 2019; House 
et al. 2020). The germination process leads to nutritional 
changes as germination reduces non-nutritional com-
pounds such as trypsin inhibitors, lectins, tannins, and 
saponins (Cornejo et al. 2019). The germination process 
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of Amaranthus caudatus seeds increases the content of 
phenolic compounds, in turn producing an increase in 
antioxidant activity (Aguilar-Felices et al. 2019; Cornejo 
et al. 2019; Pilco-Quesada et al. 2020). The production 
and accumulation of secondary metabolites like polyphe-
nols, carotenoids, chlorophyll, and betacyanin may also be 
enhanced by particular conditions and pretreatments used 
for germination.

Many abiotic and biotic elicitors have been evaluated 
as potential factors that induce foster changes in the phy-
tochemical composition of amaranth sprouts. For instance, 
a direct-electric-current treatment of 500 mA applied for a 
short period (5 min) has been used as pretreatment of ama-
ranth seeds to induce quantitative changes in the antioxidant 
enzymatic system of 6-day sprouts, achieving to increase the 
total content of flavonoids and phenolic compounds relative 
to untreated amaranth sprouts (Ozuna et al. 2018); selenium 
supplementation in seed germination was significantly corre-
lated with betacyanin content (recognized for its anti-inflam-
matory properties) in four amaranth species, with sprouts 
of Amaranthus cruentus accumulating the highest concen-
tration of betacyanins (19.30 ± 0.57–28.85 ± 2.23 mg ama-
ranth per 100 g fresh weight; (Tyszka-Czochara et al. 2016). 
Betacyanin content in Amaranthus mangostanus seedlings 
can be upregulated by treatment with methyl jasmonate and 
ethylene (Cao et al. 2012). Treatment with biostimulants 
is a promising alternative to other conventional biological 
techniques used to improve the bioactive compounds and 
biological activities of sprouts (Liu et al. 2019).

Some algal species act as elicitors of plant germination 
and growth. For example, Capsicum annuum seeds soaked 
with 8% Padina gymnospora aqueous extract showed an 
improved germination process and root growth, along with 
the presence of phytochemicals in the plant (Thriunavakkar-
asu et al. 2020). Likewise, a low concentration (0.2%) of Ulva 
lactuca extracts obtained by acid hydrolysis applied to seeds 
of mung bean (Vigna radiata), significantly improved germi-
nation rates and increased the production of seedlings, and 
led to higher contents of protein, chlorophyll, and total and 
reducing sugars in sprouts, compared to controls (Castella-
nos-Barriga et al. 2017). Synergistic effects of the application 
of Cladophora glomerata extracts and near-infrared radiation 
(NIR) in soybean (Glycine max), improved germination and 
chlorophyll content in seedlings (Michalak et al. 2018).

Despite the above evidence that seaweed extracts have 
the potential to be used as elicitors of seed germination and 
to stimulate the accumulation of antioxidant compounds in 
the sprouts produced, little is known about their efficacy in 
increasing the functionality of amaranth sprouts. Therefore, 
the objective of the present study was to evaluate the effect 
of treating amaranth seeds with extracts of Ulva lactuca and 
Padina durvillei on sprout production, phytochemicals con-
tent, sprout growth, and antioxidant activity.

Material and methods

Seaweed collection, seeds and reagents

Specimens of the seaweeds Padina durvillei Bory and Ulva 
lactucaL were collected in Mazatlan Bay, Sinaloa, Mexico 
(23°1′29.1''N, 106°25′29.7'W), in March 2017. The sea-
weeds were identified with taxonomic keys (León Álva-
rez et al. 2017; León Álvarez and Núñez Reséndiz, 2017; 
Ochoa-Izaguirre et al. 2007) and compared with the speci-
mens of herbarium of Universidad autonoma de Sinaloa: 
ID 4665–2013-FACIMAR (CONABIO 2022). Fresh sam-
ples were rinsed with distilled water, lyophilized, ground 
with a commercial grinder, and stored at -20 °C until used. 
All chemicals used in this study were analytical grade from 
Sigma-Aldrich (USA), unless otherwise specified.

A commercial stock of amaranth seeds (Amaranthus spp) 
was purchased in a local market in Guadalajara, Mexico.

Aqueous seaweed extracts (ASE)

Aqueous seaweed extracts were obtained using distilled 
water according to Tierney et al. (2013) modified as follows: 
dried algal material was mixed with water at 21 °C (1:10 
ratio, w:v) stirring for 3 h. Then, the extract was filtered 
through a glass fibre filter (1.2 µm pore size) and the algal 
residue was extracted again (twice) as described above. Fil-
trates were pooled and centrifuged at 12,000 × g for 20 min 
at 4 °C, and the supernatant was collected. Finally, the aque-
ous seaweed extract (ASE) was lyophilized and stored at 
-20 °C until analyzed.

Amaranth sprout production

Tetrazolium viability test

Six replicates of fifty seeds per treatment and concentra-
tion were hydrated in a microtube containing 200 µL test 
solution: distilled water (control treatment) or ASE from P. 
durvillaei or U. lactuca at different concentrations (0.5, 1, 
and 2.5 mg  mL−1) for 3 h at room temperature.

After preconditioning, seeds were completely immersed in 
200 µL 2, 3, 5-triphenyl tetrazolium chloride solution (1%) and 
incubated in the dark at 37 °C for 2 h (ISTA 2010). Afterward, 
the tetrazolium solution was discarded, the seeds were rinsed 
thoroughly and then dried at room temperature for examination.

Seeds were examined individually under a stereomicro-
scope at 40 × and classified according to coloration. Seeds were 
classified into different categories based on physiological state: 
viable seeds with healthy and vigorous embryonic tissues were 
pale red-color throughout the embryo and endosperm; tissues 
undergoing deterioration were an intense red-color; non-viable 
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seeds with dead tissue were a dull white-color; and immature 
tissue was a green-color (Craviotto et al. 2008).

Seed pre‑treatment with ASE

Before germination and pretreatment, seeds were disinfected 
according to Montoya González et al. (2016), through wash-
ing with distilled water followed by treatment with commer-
cial 2% sodium hypochlorite for 15 min, then rinsed with 
distilled water (3 times).

Disinfected amaranth seeds were soaked in the pre-treat-
ment solutions (5 ratio, v/w) for 30 min. The pre-treatment 
solutions were distilled water as negative control (T0), com-
mercial biofertilizer (ByoAlga® from Ascophyllum nodo-
sum: Sustainable Products Biodynamics S.A.S.) as reference 
control (TB), and test solutions of ASE from Padina durvil-
lei (TP) and Ulva lactuca (TU) at 0.5, 1.0 and 2.5 mg  mL−1.

Germination assay

The pre-treated seeds (fifty seeds per treatment and con-
centration) were placed in Petri dishes on moist filter paper 
with 4 mL of distilled water (6 replicates per treatment). 
If necessary, the filter paper was moist every week to pre-
vent the fermentation process of sprouting. Germination 
was monitored daily for 5 days, maintaining a temperature 
of 25–28 °C, constant relative humidity (25%), and under 
fluorescent light (50 µmol photons m-2  s−1) with a 16/8 h 
light/dark photoperiod. The percentage of germination was 
determined with the following equation:

Development of sprouts

Seeds (5 g) soaked in the pretreatment solutions were ger-
minated for 5 days in a disinfected glass container (500 mL) 
capped with a mesh lid to allow oxygen exchange. Germina-
tion chambers were maintained at 25–28 °C, 25% relative 
humidity under fluorescent light (50 µmol photons  m−2  s−1) 
with a 16/8 h light/dark photoperiod cycle. Sprouts were 
hydrated with water. Hypocotyl height and root length were 
measured (in mm) using a digital vernier.

Sprout extracts

To determine potentially bioactive compounds contained 
in ASE-treated amaranth sprouts, these were subjected to 

%Germination =

(

# germinated seeds

# total seeds tested

)

× 100

extraction using the method described by Paśko et al. (2009). 
Briefly, 1 g lyophilized sprouts was mixed with 40 mL extrac-
tion solution (absolute methanol: 0.16 M HCl: distilled water, 
in a 8:1:1 ratio) for 2 h with constant stirring. Then, the extract 
was recovered by filtration (Whatman No. 2) and kept in dark 
at -20 °C until used.

Phytochemicals analysis

Chlorophylls and total carotenoid content Chlorophyll a, b, 
and total carotenoid content were determined according to 
Wellburn (1994). Briefly, sample solutions were diluted as 
needed with 80% methanol and the absorbance was read at the 
wavelength characteristic of chlorophylls and carotenoids (i.e., 
470, 653, and 666 nm). Eighty percent methanol (v/v) was used 
as blank. Trolox was used as standard Concentration values 
were referred to 1 mL of extract obtained from 1 g dry sprouts.

Total chlorophyll and carotenoid contents, in µg  mL−1, 
were calculated with the following equations (Wellburn 
1994), and subsequently expressed in mg of pigment per 
gram of dry sprouts:

where TCCa = total content of chlorophyll a; TCCb = total 
content of chlorophyll b; TCC  = total content of carotenoids; 
A = absorbance at 470, 653, or 666 nm, with six replicates.

Total phenolics content (TPC) Total soluble phenolics con-
tent was determined using the Folin–Ciocalteu method 
(Marigo 1973). Dry samples were resuspended in acetone 
(1 mg  mL−1). Then, 100 mL of each sample was mixed with 
150 mL Folin solution (previously diluted with deionized 
water in a 1:1 ratio), followed by the addition of 1 mL 2% 
sodium carbonate in 0.4% sodium hydroxide. The mixture 
was incubated in the dark at room temperature for 20 min. 
The resulting blue complex was read in a spectrophotometer 
at 750 nm. Phenolic content was expressed as mg of gallic 
acid equivalent (GAE) per g of sample (dry weight). A gal-
lic acid standard curve was constructed for the concentra-
tion range of 0–0.25 mg  mL−1 with six replicates for each 
treatment.

Total flavonoid content (TFC) Total flavonoid content was 
determined according to Luximon-Ramma et al. (2002). 
Samples of sprout extract (1 mL) were diluted in equal 
volumes of a 2% aluminum chloride solution (2  g of 
 AlCl3·6H2O in 100 mL methanol). The mixture was incu-
bated at room temperature for 10 min. Absorbance was read 

TCCa = 15.65A
666

− 7.34A
653

TCCb = 27.054A
653

− 11.21A
666

TCC =
[(

1000A
470

− 2.86TCCa − 129.2TCCb
)]

∕221
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at 367 nm. The results were expressed in mg of quercetin 
equivalents (QE) per gram of dry sprout. A quercetin stand-
ard curve was constructed for the concentration range of 
0–0.5 mg  mL−1 with six replicates for each treatment.

Total betacyanin content (TBC) Total betacyanin content was 
determined in cotyledons of Amaranthus sprouts according 
to Chávez et al. (2015) with modifications: twenty fresh 
2-day cotyledons were incubated in test tubes with 10 mL 
10% ethanol solution at 50 °C for 30 min. Absorbance values 
of the pigment solutions were read at 536 nm. Total betacya-
nin content (TBC) was calculated with the equation:

where: A is the absorbance of the pigment solution; M is the 
molar weight of betacyanin (550.48 g  mol−1); E is the molar 
extinction coefficient of betacyanin (1120 L  mol−1  cm−1), 
and b is the path length of quartz cuvettes (1 cm) with six 
replicates for each treatment.

In‑vitro Antioxidant Capacity Assays

DPPH free‑radical scavenging activity The free-radical 
scavenging potential of the ASE was assessed according to 
the method by Mensor et al. (2001), modified as follows: a 
100 mL aliquot of each extract (at concentrations of 0.0015 
to 1.5 mg  mL−1) was mixed with 900 mL 0.3 mmol  L−1 
2,2-diphenyl-1-picrylhydrazyl (DPPH) solution in ethanol. 
The mixture was incubated in the dark at room temperature 
for 30 min and absorbance was read at 518 nm.

The percentage of DPPH scavenging was calculated with 
the following equation:

Trolox was used as standard (0.0008–0.1 mg   mL−1), 
whereas the DPPH solution served as a control to calculate 
the degree of radical scavenging by samples and the refer-
ence standard, expressed in Trolox equivalent antioxidant 
activity (TEAC, mg TE  g−1 of dry sprout) with six replicates 
for each treatment.

Ferric reducing antioxidant power (FRAP) assay The FRAP 
assay was performed according to Benzie and Strain (1996), 
with minor modification reported by Szőllősi and Varga 
(2002). The FRAP reagent was prepared from three differ-
ent solutions: Solution A: 300 mM acetate buffer, pH 3.6; 
Solution B: 10 mmol  L−1 TPTZ dissolved in 40 mmol  L−1 
HCl; Solution C: 20 mmol  L−1  FeCl3·6H2O. The work solu-
tion was prepared by mixing A, B, and C in a 10:1:1 ratio (by 

TBC
( mg

100
ml

)

= ( A×M
/

E×b ) × 1000

%DPPH scavenging

= [(1 − Absorbance of sample)∕Absorbance of Control] × 100

volume). For the assay, 100 µL sample was mixed with 1400 
µL FRAP, then incubated at room temperature for 30 min in 
the dark. The absorbance was read at 593 nm. Trolox was 
used as reference standard (0.01–0.7 mg  mL−1) to calculate 
TEAC (mg TE  g−1 of dry sprout) with six replicates for each 
treatment.

Statistical analyses

The results are reported as the mean ± standard deviation. 
The percentages of germination and viability were arc-
sin-transformed prior to analysis. All data were tested for 
homoscedasticity (Levene test) and normality (Kolmogo-
rov–Smirnov test) assumptions. A one-way analysis of 
variance (ANOVA) was used to test the data for significant 

Fig. 1  Effect of concentration of aqueous seaweed extracts (mg · 
 mL−1) on percentage viability (A) and germination (B). Data are 
mean ± S.D. (n = 3), 50 seeds by replicate were used. Distilled water 
as a negative control (T0); ByoAlga® from Ascophyllum nodosum 
(TB), ASE from Padina durvillei (TP) and Ulva lactuca (TU)
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differences among treatments, followed by Tukey’s post 
hoc test. The results of the biochemical assays were ana-
lyzed statistically using the Student´s t-test. Differences 
were significant at P < 0.05. All statistical analyses were 
performed using SigmaPlot version 11.0 (Systat Software, 
Inc.; Germany).

Results

Viability and germination test

The viability test with tetrazolium salts showed that ama-
ranth seeds treated with algal extracts show non-significant 
differences (P < 0.05) in mean percent viability between 
treatments TP, TU, TB, and T0. Percent viability ranged 
between 72 and 85% (Fig. 1A). In all treatments, percent 
viability exceeded the 70% germination threshold estab-
lished officially for marketing, (Bauer et al. 2003).

Treatments with TP and TU did not reduce the viability 
of amaranth seeds, indicating that seeds remain viable at the 
different concentrations tested (Fig. 2).

The percent germination was greater than 50% in all treat-
ments (Fig. 1B), with non-significant differences (P < 0.05) 
between treatments; however, the highest percentages were 

observed in treatments TB and TU at 0.5 mg  mL−1 and 
1.0 mg  mL−1 compared with the T0 treatment and other 
algae extracts; the treatments with 0.5 mg  mL−1 TP and 
2.5 mg  mL−1 TU yielded the lowest percent germination.

Growth of sprouts by seaweed extract

Treatments with the different ASE concentrations 
tested showed significant differences (P < 0.05) in the 
hypocotyl and root growth of amaranth sprouts com-
pared to the control treatment (T0; Fig. 3). The ASE 
at 1.0 mg  mL−1 and 2.5 mg  mL−1 TU and 2.5 mg  mL−1 
TP produced significantly greater hypocotyl growth in 
sprouts, with 2.5 mg  mL−1 TU and TB treatments hav-
ing the greatest statistical difference relative to the other 
TP and TU concentrations tested, as well as the T0 and 
the commercial fertilizer based on A. nodosum applied 
at 0.5 mg   mL−1 TB (Fig. 3A). treatments TP and TU 
promoted significantly greater root growth relative to 
the control treatment (T0). Treatmet with 2.5 mg  mL−1 
TP produced similar results to 0.5 mg  mL−1 TB. Both 
treatments showed significant differences (P < 0.05) 
compared to 2.5 mg  mL−1 TU and the ASE treatments at 
low concentrations; by contrast, treatments with 1.0 and 
2.5 mg  mL−1 TB elicited greater root growth compared 
to TP and TU (Fig. 3B).

Fig. 2  Tetrazolium test of 
amaranth seeds after treatment 
with different concentrations of 
aqueous seaweed extract (ASE): 
(A) color differences between 
seeds with viable and non-via-
ble embryos; viable seeds after 
ASE treatment of (B) Padina 
durvillei and (C) Ulva lactuca. 
Distilled water as a negative 
control
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Sprouts treated with algal extracts of P. durvillei and U. 
lactuca were larger in size and more intensely pigmented 
(red–purple) than sprouts treated with water (Fig. 4). the 
betacyanin content of sprouts treated with the algal extracts 
had a significantly observing a higher total betacyanin con-
tent when treated with 2.5 mg  mL−1 TP, TU, and TB (Fig. 5).

In‑vitro antioxidant activity on amaranth sprouts

Statistically significant differences (Tukey, P < 0.05) were 
observed in the antioxidant activity of sprouts grown with 
the algal extract treatments. Sprouts grown in 0.5 mg  mL−1 
exhibited the highest antioxidant activity in vitro sprouts 
imbibed with the TB algal product (ByoAlga®) showed a 
proportional dependence between the increase in the concen-
tration used and TEAC values for both measures of in-vitro 
antioxidant activity (DPPH and FRAP) (Fig. 6).

Phytochemical content in amaranth sprout

To the total polyphenols content (TPC), showed an signifi-
cant increase in the low (0.5 mg  mL−1) PT and TU treat-
ments, ASE content decreased with higher ASE concen-
trations in both treatments, in contrast to treatment with 
a commercial product based on A. nodosum (TB), where 
TPC increased in parallel with higher product concentra-
tion (Table 1). Total flavonoid content (TFC) significantly 
increased in amaranth sprouts treated with 0.5 mg  mL−1 TP 
relative to the control (T0) and all other concentrations of 
TP, flavonoid content significantly increased in sprots treated 
with the highest concentration of TU, sprouts treated with 
TB showed the significant lowest flavonoid levels (Table 1). 
The total content of chlorophyll a and b (TCCa and TCCb, 
respectively) significantly increased in sprouts pretreated 
with 0.5 mg  mL−1 TP, while TU pretreatments produced a 
positive effect in TCCa in sprouts at concentrations below 
2.5 mg  mL−1. In contrast, TB did not yield increases in 
TCCa and TCCb (Table 1). Producing pretreatments sprouts 
in cultures with TU allowed a higher accumulation of total 
carotenoids (TCC) compared with all other treatments 
(Table 1).

Discussion

Viability and germination test

The viability test of Amaranthus seeds treated with ASE 
showed that it is not toxic to the seed at the concentra-
tions tested with the coloration observed in Amaranth 
seeds treated with algal extracts corresponding to a via-
ble physiological state: red (healthy and vigorous tissue) 
and matte white (dead tissue) (Fig. 2A) (Carvalho et al. 
2014). Seaweed extracts act as natural priming agents 
to improve seed germination in different crop seeds. For 
example, according to Dutta et al. (2019), seed of red pep-
per (Capsicum frutescens) pretreated prior to germination 
with Kappaphycus alvarezii and Gracilaria edulis extract 
significantly improved germination percentage and seed-
ling weight; Acanthophora spicifera, Gelidium robustum, 
Gracilaria parvispora, Macrocystis pyrifera, Sargassum 
horridum, and Ecklonia arborea improved germination 
in mung bean (V. radiata) (Filippo-Herrera et al. 2019). 
The effect on the percentage of germination of amaranth 
seeds treated with biostimulants based on plant extracts 
(Trianthema portulacastrum) and algal extracts (Ascophyl-
lum nodosum) is similar to the effect of water imbibition 
(Al Sherif and Gharieb 2011; Hossain and und Niemsdorff 
2018). This is consistent with the present results where no 
increase in percent germination occurred in seeds treated 
with algal extracts.

Fig. 3  Physical characteristics of amaranth sprouts after pre-treat-
ments with different concentrations (mg mL−1) of aqueous seaweed 
extract (ASE): (A) Hypocotyl height; and (B) root length. The values 
are mean of representative sample of seedlings from each pre-treat-
ment (n = 12). Means with different lettersare significantly different 
(P < 0.05). Distilled water as a negative control (T0); ByoAlga® from 
Ascophyllum nodosum (TB), ASE from Padina durvillei (TP) and 
Ulva lactuca (TU)
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Growth of sprouts by seaweed extract

Different seaweed extracts, especially those from kelps like 
A. nodosum, have been utilized to increase biomass yield 
and boost the quality of plant products (Filippo-Herrera 

et al. 2019). Algal extracts improve germination, vegetative 
growth, and root growth, as well as promoting changes in 
phytochemicals such as polyphenols, carotenoids, and chlo-
rophylls (Ali et al. 2021). For example, extracts of A. nodo-
sum promoted the growth of leaves and roots of Amaranthus 
tricolor (Hossain and und Niemsdorff (2018). Extracts of 
U. lactuca had a positive effect as a root-growth promoter, 
enhancing germination, and promoting growth in tomato 
(Hernández-Herrera et al. 2018) and mung bean (Castella-
nos-Barriga et al. 2017). However, there is no documented 
evidence on the effect of extracts of P. durvillei, a species 
widely distributed on the coasts of the Mexican Pacific. This 
study showed that extracts of U. lactuca and P. durvillei 
have biostimulant activity, similar to other algal extracts (EL 
Boukhari et al. 2020; Ali et al. 2021).

In‑vitro antioxidant activity on amaranth sprouts

The present results suggest that it is possible to obtain 
amaranth sprouts with antioxidant properties in a shorter 
time (5 days after post-seedling emergence) by stimulation 
with ASE treatment, In commercial amaranth microgreens 
(> 7 days post-seedling emergence), the in-vitro antioxidant 
capacity evaluated by ORAC, FRAP, and ABTS, with values 
of 1.4, 0.1, and 0.6 mmoles Trolox (100 g)−1 fresh weight, 
respectively (Wojdyło et al. 2020).

Fig. 4  Amaranth sprouts after 
treatment with: (A) T0; (B) TB, 
(C) TP and (D) TU. Scale bars 
indicated 10 mm. The concen-
tration used for each treatment 
was 2.5 mg  mL−1. Distilled 
water as a negative control (T0); 
ByoAlga® from Ascophyl-
lum nodosum (TB), ASE from 
Padina durvillei (TP) and Ulva 
lactuca (TU)

Fig. 5  Betacyanin content in amaranth sprouts after pre-treatments 
with different concentrations (mg  mL−1) of aqueous seaweed extract 
(ASE): The values are mean of representative sample of seedlings 
from each pre-treatment (n = 12). Means with different latters are 
significantly different (P < 0.05). Distilled water as a negative control 
(T0); ByoAlga® from Ascophyllum nodosum (TB), Extract from Pad-
ina durvillei (TP) and Ulva lactuca (TU)
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Antioxidant activity in plants is part of the defense mech-
anisms that provide resistance to oxidative stress caused by 
free radicals. In this sense, the results showed an antioxidant 
effect of the sprouts treated with the algal extracts. Some 
plant hormones like SA are related to induces gene expres-
sion involved in enhance biosynthesis of phenolic com-
pounds with antioxidant capacity (Ali et al. 2021).

Phytochemical content in amaranth sprout

In the present study, the growth stages evaluated included 
the early vegetative phase on 5 days post-seeding, so that 
the seed had started its stage of higher accumulation of TPC 
and other metabolites with antioxidant potential (Karamać 
et al. 2019; Martínez-Núñez et al. 2019); this facilitated the 

accumulation of these compounds as a stimulation effect in 
seeds treated with ASE, as suggested by the results obtained 
herein (Table 1).

According to Cao et  al. (2012), inducers such as 
cytokines, jasmonates, and salicylates increase the produc-
tion of betacyanins in amaranth sprouts. Our results showed 
that treatment with ASE of P. durvillei and U. lactuca prior 
to germination significantly increased the betacyanin levels 
in Amaranthus sprouts compared to water controls.

The results of the phytochemical analysis performed 
on sprouts were similar to other studies using ASEs. For 
example, there was an increase in chlorophyll content and 
phenolic compounds in the medicinal plant Achillea mille-
folium treated with algal extracts of A. nodosum (Pacheco 
et al. 2019). Extracts of U. lactuca produced higher contents 
of chlorophylls a and b in Amaranthus roxburghinus and 
Amaranthus tricolor (Sridhar and Rengasamy 2011), and 
in sprouts of bean V. faba (Yahmi et al. 2021). A shorter 
germination process of amaranth seeds (24 h) increases the 
accumulation of phenolic compounds by about threefold-
relative to levels in ungerminated seeds, i.e., from 17.61 and 
11.71 mg GAE (100 g)−1 sample, up to 58.55 and 36.65 mg 
GAE (100 g)−1 sample in germinated seeds of A. caudatus 
and A. quitensis, respectively (Cornejo et al. 2019).

There was a significant differences in TPC in different 
growth stages of A. caudatus, where the vegetative stage 
(34 to 55 days post-seedling emergence) showed the highest 
accumulation (nearly 1 mg GAE  g−1 fresh weight) (Karamać 
et al. (2019). In commercial amaranth microgreens of more 
than 7  days post-seedling emergence, the total content 
of compounds with antioxidant potential (fresh weight) 
was 132.9 mg (100 g)−1 for polyphenols and 680.5 and 
4073 µg  g−1 for carotenoids and chlorophylls, respectively 
(Wojdyło et al. 2020). Changes in the phytochemical content 
of amaranth sprouts at low concentration of algal extracts 
may be due to bioactive compounds (such as unique polysac-
charides, plant growth promoting hormones, fatty acids, ster-
ols, carotenoids, oxylipins, minerals, peptides, amino acids 
and proteins) (Filippo-Herrera et al. 2019), these substances 
in the extracts vary differently according to the class and 
species of seaweed, as well as the type of extraction method 
used. In this work we used aqueous seaweed extracts previ-
ously characterized by Benítez García et al. (2020) where 
plant growth promoting hormones (SA, and JA) were identi-
fied; these bioactive compounds at low concentrations have 
positive effects on the accumulation of phytochemicals in 
plants (Ali et al. 2021; Wang et al. 2022); this behavior, 
highlight potential of algae to act as a biostimulant on plants, 
as described by Ali et al (2021).

The presence of salicylic acid (SA) and jasmonic acid 
(JA) in ASEs are related to the systemic response of plants 
and induce the biosynthesis of secondary metabolites 
such as phenolic compounds, chlorophyll, and carotenoids 

Fig. 6  Antioxidant activity of amaranth sprouts produced by treat-
ment with different concentrations of seaweed extract (SE), assessed 
by (A) DPPH free-radical scavenging activity and (B) ferric reducing 
antioxidant power (FRAP) assay. The values are mean ± S.D. (n = 6). 
Means with different latters are significantly different (P < 0.05). Dis-
tilled water as a negative control (T0); ByoAlga® from Ascophyllum 
nodosum (TB), Extract from Padina durvillei (TP) and Ulva lactuca 
(TU)
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(Benítez García et al. 2020; Wang et al. 2022). For example, 
Jirakiattikul et al. (2021) studied the effect of salicylic acid 
(SA) on the accumulation of secondary metabolite and anti-
oxidant activity in cultures of sprouts of Musa acuminata cv. 
'Gros Michel'; their results showed that SA was effective in 
improving the production of total phenols (105.26 ± 6.43 mg 
CE  g−1 dry extract). Separately, Wang et al. (2022) found 
that the application of AS and AJ to seedlings of Allium 
tuberosum Rottler ex Spreng significantly increased total 
chlorophyll, phenols, flavonoids, and vitamin C contents. 
Hence, phytohormones in U. lactuca and P. durvillei ASEs 
are likely to induce changes in the profile of secondary 
metabolites of amaranth sprouts.

Although biostimulants based on algae extracts have 
gained popularity in the development of green agriculture, 
studies with seaweed species from tropical waters are scarce. 
The information that can be generated from species with 
constant blooms on the coast of Mazatlan Sinaloa, such as P. 
durvillei and U. lactuca, whose extracts showed that they are 
capable of improving the content of antioxidant compounds 
in amaranth sprouts. This new information may contribute 
to increasing the attractiveness of the study and/or develop-
ment of products based on these tropical marine algae with 
potential use in different crops.

Conclusion

In conclusion, aqueous seaweed extracts from P. durvillei 
and U. lactuca possess biostimulant activity when applied 
to amaranth seeds; in addition, ASEs improved the growth, 
yield, and functional quality of amaranth sprouts. These 

results suggest that extracts from these algae species applied 
at 2.5 mg  mL−1 and 0.5 mg  mL−1 are suitable as an alternative 
to synthetic biostimulants used in the production of sprouts.
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