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Mobile electrocardiogram (ECG) monitoring is an emerging area that has received increasing attention in recent years, but still
real-life validation for elderly residing in low and middle-income countries is scarce. We developed a wearable ECG monitor
that is integrated with a self-designed wireless sensor for ECG signal acquisition. It is used with a native purposely designed
smartphone application, based on machine learning techniques, for automated classification of captured ECG beats from aged
people. When tested on 100 older adults, the monitoring system discriminated normal and abnormal ECG signals with a high
degree of accuracy (97%), sensitivity (100%), and specificity (96.6%). With further verification, the system could be useful for
detecting cardiac abnormalities in the home environment and contribute to prevention, early diagnosis, and effective treatment of
cardiovascular diseases, while keeping costs down and increasing access to healthcare services for older persons.

1. Introduction

Cardiovascular diseases (CVD) have remained the leading
cause of death globally during the last 15 years. An estimated
17.7 million people died from CVD in 2015, representing 31%
of all global mortality. Of these deaths, approximately 6.9
million were in people aged 60 years and older, and over 75%
occurred in low and middle-income countries (LMIC) [1, 2].
LMIC are more greatly affected than high-income coun-
tries [3–5], largely because people with low socioeconomic
status have poor access to healthcare for early diagnosis
and treatment of CVD [5]. An increasing urgency exists to
tackle CVD in LMIC through effective strategies, guided
and monitored by robust estimates of disease prevalence
and burden [6]. Thus, technological innovations, including
mobile and wireless technologies, are now being developed
to improve prevention and control of CVD, and other aspects

of healthcare, particularly for older people residing in LMIC
[7–9].

The growing application of smartphone technology, due
to decreasing costs and increased ease-of-use, combined
with parallel advances in sensing technologies, is causing
a shift from traditional clinic-based healthcare to real-time
monitoring. This shift is supported by the development of
mobile personal health monitor (PHM) systems, which are
personalized, intelligent, reliable, and noninvasive [10, 11].
PHM systems could improve the quality of care, while
reducing costs through timely detection [12–14].

Mobile PHM systems typically consist of a Body Area
Network—a set of wearable sensors with wireless data trans-
fer and energy storage capability—integrated by a smart-
phone as the central processing unit (Figure 1). The physio-
logical signals are processed in real-time by applyingmachine
learning techniques, providing immediate feedback to the
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Figure 1: General architecture of a mobile personal health monitor system.

user. The data can also be made available to healthcare
providers for medical feedback and clinical support [15–17].

PHM systems that offer mobile electrocardiogram (ECG)
monitoring have received increasing attention in recent years
[18–20]. ECG records are used for screening, diagnosis,
and monitoring of several heart conditions from minor to
life threatening. Hence, ECG monitoring is a critical and
an essential part of healthcare delivery for older adults
[17]. Therefore, PHM systems that incorporate ECG data
would offer mobile physiological, diagnostic, prognostic,
therapeutic, surveillance, and archival capabilities [18, 19]
in a wide range of situations, including rural zones, areas
lacking cardiologists, and population of solitary elderly, many
of whom live alone in their own homes and are restricted
physically [21].

However, although a number of PHM systems that collect
ECG data have been developed, some of these do not
include classification methods for automated detection of
arrhythmias or other abnormalities. Among those validated,
Kwon et al. proposed a smartphone-integrated ECG mon-
itoring system that works opportunistically during natural
smartphone use [22]. The system captured ECG reliably
in target situations with a reasonable rate of data drop.
Depari et al. developed a single-lead ECG tracing acquisition
system based on a smartphone, with a purposely designed
application to demodulate the audio signal and extract, plot,
and store the ECG tracing [23]. Dinh designed a wearable
unit for detecting and sending ECG signals wirelessly to a
smartphone [24]. Yu et al. developed a wireless two-lead ECG
sensor that transmitted data via Bluetooth and processed and
displayed the ECG waveform on a smartphone, all with low
power consumption for long-term monitoring [25].

Other PHM systems use commercial monitors or do
not provide an intrinsic method for classify ECG signals.
Lee et al. designed a wireless system for acquisition and
classification of ECG beats integrated with a smartphone.

Abnormal beats and other symptoms were diagnosed by
cardiologists from results displayed on the screen. Accuracy
of beat classification was 97.25% [26]. Miao et al. developed a
wearable ECG monitoring system using a smartphone, with
automated recognition of abnormal patterns via decision
trees in a WEKA environment [27]. The system achieved a
2.6% discrimination ability [28]. Oresko et al. developed a
smartphone-based application for real-time CVD detection,
using a commercial ECG heart monitor and an adaptive arti-
ficial neural network (NN) algorithm for signal preprocessing
and classification [29]. The system was trained using the
MIT-BIH arrhythmia database [30] and retrained based on
real ECG recordings, ultimately demonstrating classification
accuracy of 93.32%. None of the aforementioned studies [22–
26, 28, 29] reported considerations in software design to
address end-user usability and acceptance of mobile PHM
systems in older adults.

To improve on previous systems, it would be necessary to
enhance the capture as well as the automated classification of
ECG signals. We developed a complete mobile PHM system,
integrated with a self-designedwireless sensor for ECG signal
acquisition, and a native purposely designed smartphone
application to be user-friendly to elderly, based on machine
learning techniques, for automated classification of captured
ECG beats. The signal sensing and transferring process
uses a two-lead ECG sensor with Bluetooth technology and
an artificial NN approach for identifying abnormal ECG
patterns.

The rest of this paper is organized as follows. The
methodology of the proposed PHM system is presented
in detail in Section 2; the experimental results for ECG
signals acquisition, wireless transmission, and assessment of
recognition accuracy are shown in Section 3; we conclude our
study in Sections 4 and 5, with discussion, limitations, and
perspective for further research.
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Figure 2: Framework of themobile personal healthmonitor system.

2. Materials and Methods

The PHM system described in this report operates in five
stages: sensing, transferring, classification, immediate feed-
back, and clinical support (Figure 2). The captured ECG
tracings are transmitted and displayed in real-time on a
smartphone screen. The presence or absence of arrhythmias,
determined using machine learning analysis, is included
and is shared via email with healthcare professionals for
verification of abnormal ECG patterns.

2.1. ECG Sensor. The sensor design includes acquisition,
amplification, filtering, digitalization, and transmission of
ECG signals. Three identically sized electrodes and low
frequency amplifiers are used to capture the signals and the
coupling of impedances. The signal is filtered through low-
pass and high-pass filters to improve the signal/noise ratio.
The processed signal is then digitized and transmitted by an
analog-to-digital converter and Bluetoothmodule embedded
in a microcontroller unit. A 9V primary lithium battery with
1200 mAh capacity powers the ECG sensor.

To acquire reliable ECG signals, two electrodes are
attached to the chest as precordial leads V1 andV2 positioned
in the fourth intercostal space to the right and left of the
sternum, respectively, because incorrect positioning of the
precordial electrodes changes the ECG significantly [31],
and a reference electrode is placed far from these on the
right leg (Figure 3). The reference electrode plays the role
of driving the user’s body to attenuate the common mode
noise caused by external electromagnetic interference [32].
The analog input signal from two lead electrodes was initially
amplified through an AD620 differential instrumentation
amplifier [33]. Before the next amplifier stage, we coupled the
impedance using a TL082 operational amplifier, configured
as a voltage follower [34].

The current configuration uses an instrumental amplifier,
based on an encapsulation with four LM324 operational
amplifiers [35], to amplify the signal with a noninverter

amplifier, then filter it, and add voltage (Figure 4). A low
power OP97E operational amplifier [36] closes the circuit,
protects the user from static charges, and suppresses voltage
transients. Two LM324 operational amplifiers act as Butter-
worth filters, to generate an appropriate low-noise signal that
fits within the input range of the analog-to-digital converter
[37]. A low-pass active filter with a corner frequency of 40
Hz and a second-order high-pass filter with cutoff frequency
of 0.5 Hz remove unnecessary frequency components of the
ECG signal. Because the signal obtained consists of positive
and negative parts, it was necessary to add a positive carrier
signal. To recompose the signal, we used operational LM324
amplifiers as noninverter adders of the two inputs, fed by the
ECG signal and a variable power source of 0–9 volts. This
increases or decreases the carrier signal, as appropriate. A pair
of equal resistances is added, one to the input of the analog
signals and another from the inverter input of the operational
amplifier to the circuit ground.Thus, the output signal has the
same frequency, but with only positive voltage values, and is
ready to be read by any microcontroller.

The BlendMicro of Read Bear Labs [38], which combines
the Atmega32U4 microcontroller unit with a Bluetooth Low
Energy (BLE) module [39, 40], is used for microcontroller
processing of the signal. Generic Access Profile (GAP)
controls connections and advertising in BLE standard and
determines how two devices interact with each other by
assigning roles. The ECG sensor and smartphone are defined
as peripheral and central devices, respectively. GAP sends
advertising out as Advertising Data payload, which can
contain up to 31 bytes of data and constantly transmits from
the sensor to the smartphone. After a dedicated connection
is established, the advertising process stops, and BLE uses
Generic Attribute Profile (GATT) services and characteristics
to communicate in both directions.This connection is exclu-
sive, because a BLE peripheral only can be connected to one
central device at a time.

Communication is established through a generic data
protocol, Attribute Protocol, which is used to store services,
characteristics, and related data in a simple lookup table.
GATT transactions in BLE operate as a server/client rela-
tionship. The GATT server is the peripheral that holds the
Attribute Protocol, and the GATT client (smartphone) sends
requests to this server. All transactions are started by themas-
ter device, the smartphone, which receives responses from
the slave device, the ECG sensor. A simple Universal Asyn-
chronous Receiver Transmitter type interface [41] defines a
custom service containing two specific characteristics for the
channels of transmission and reception of the ECG signal.

2.2. Neural Network Approach. We use a three-layered, feed-
forward NN approach, built through Matlab NN toolbox
[42], for automated classification of acquired ECG tracings.
A scaled conjugate gradient back-propagation algorithmwith
random weights/bias initialization is used for the train-
ing stage. The transfer functions are sigmoidal hyperbolic,
logarithmic tangential, and lineal. Performance of the NN
system was tested with a cross-entropy error function using
the mean-squared error parameter, computed for differences
between the actual outputs and the outputs obtained in each
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Figure 3: Schematic representation of the ECG amplifier circuit and electrode placement on the body.
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Figure 4: Encapsulation with four LM324 operational amplifiers to amplify, filter, and add voltage to the ECG signal.

trained step.The training ended if the total sumof the squared
errors was <0.01 or when 3000 epochs were reached. The
target outputs for normal and abnormal ECG patterns were
(0,1) and (1,0), respectively.

2.3. Data Processing. ECG data for training was obtained
from a publicly available source, the Physikalisch-Technische
Bundesanstalt Diagnostic ECG Database [43]. This bench-
mark database contains 549 two-minute digitized ECG
records of 290 subjects (mean age 57.2 y; 27.9% women)
provided by the National Metrology Institute of Germany.
The ECG data includes 15 simultaneously measured signals:
the conventional 12 leads, plus 3 Frank Lead ECGs. Each
signal is digitized at 1000 samples per second, with 16-bit
resolution over a range of ±16 mV and 1 KHz sampling
frequency.

We selected data from 268 subjects with clinical sum-
maries available. These included a variety of diagnostic
classes: 52 healthy controls, 148 myocardial infarctions, and
68 with other cardiac abnormalities. ECG beats were classi-
fied in normal and abnormal heartbeat patterns from ECG

records reported as regular and irregular cardiac rhythm.
LeadV1was chosen for the analysis, because it has the highest
ratio of atrial to ventricular signal amplitude and, therefore,
offers more representative characteristics for identifying the
common heart diseases [44, 45]. To avoid overfitting and
improve the generalization capability of the NN approach, we
added simulated ECG data with artificial corruption, using
a Gaussian white-noise model [46], to generate 110 normal
and 72 abnormal virtual ECG tracings. The global training
dataset contained 8000 beats from all 450 records, for feature
extraction of ECG patterns.

The trained NN system was tested on participants of the
Maracaibo Aging Study [47], which has 2500 subjects ≥ 55
y of age. One hundred voluntary subjects (mean age 73.5
± 11.8 y; 74% women) were recruited in the Institute for
Biological Research of the University of Zulia, in Maracaibo,
Venezuela. All 100 subjects had a previous ECG diagnostic
performed by an expert cardiologist, and 13 were diagnosed
with some type of cardiac arrhythmia. These ECG records
were classified as abnormal and the rest as normal ECG
patterns. Recruited participants had reasonable smartphone
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skills and were assertive about using new technologies.
Each volunteer was instructed how to use the smartphone
application and underwent 16-second ECGmonitoring using
the PHM system. ECG acquisitions were performed and
supervised by medical staff. The ethical review board of the
Institute of Cardiovascular Diseases of the University of Zulia
approved the protocol. Informed consent was obtained from
each subject or a close family member.

2.4. Software Development. We use Matlab Compiler SDK to
save the trainedNN as aMatlab function into a shared library
for use in an external framework [48]. The smartphone
application for plotting the acquired ECG tracing on screen
and for return NN output was developed in an Android
Studio development environment. The Android Bluetooth
serial port profile library [49] establishes the connection
with the wearable ECG sensor. Android multithreading
[50] allows the smartphone to maintain normal operations,
while receiving real-time ECG signals. To make the Android
application user-friendly to elderly subjects with reduced
vision and manual dexterity, we use a simplified Graphic
User Interface with a bright screen, large text and numbers,
and simple input buttons with touchscreen technology, all
of which have been proven to be efficient for older adults
[51]. To provide accurate diagnostic and medical support,
application settings include the option to sending screenshots
of ECG signal and classification results via email to previously
specified healthcare professionals. To assure privacy, reports
forwarded to selected recipients lack personal identification,
which is already associatedwith the source email address.The
system can be configured to automatically send ECG profiles
at the end of each monitoring period or only when abnormal
ECG patterns are detected.

3. Results

3.1. Acquisition of ECG Signal. A prototype of the PHM sys-
tem is shown in Figure 5, and the performance characteristics
of the ECG sensor device are given in Table 1. Processing
of the ECG tracing, from the first stage of amplification
to display on the smartphone, includes (a) amplification by
the AD620, (b) coupling of impedance through the TL082,
(c) amplification through the LM324, (d) filtering through
the low-pass filter, (e) filtering with the high-pass filter,
and (f) digitalization and transmission of the positive ECG
signal (Figure 6). The analytical process is displayed on the
smartphone (Figure 7).

3.2. ECG Classification. When the NN approach was trained
on 450 records of the training dataset, the mean-squared
error convergence goal (0.0052) was reached in 802 epochs.
The best performance was obtained using 10 neurons in
the hidden layer of the NN system (Figure 8). Overall
classification accuracy in training stage was 97.3%. Correct
classification was 92.6% for normal and 100% for abnormal
ECG patterns.

When performance of the trained NN approach was
tested on real ECG tracings from the test dataset, classifica-
tion accuracy was 97%. The results are shown in a confusion

Figure 5: Prototype of the self-designed ECG sensor device.

Table 1: Performance summary of the ECG sensor device.

Technology
Low-Power Microchip
8-bit AVR RISC-Based

Microcontroller
Supply Voltage 3.3 V
Input Impedance 100 MΩ

Frequency
Response

Range 0.1Hz and
Internal 8MHz

Calibrated Oscillator
Common Mode
Rejection Ratio >90dB

Gain 45
Sampling Rate 9.6KHz
Data Bit-Width 8 bits

Table 2: Confusion matrix for classification of the test dataset.

True output
Estimated output Normal Abnormal
Normal 84 0
Abnormal 3 13

Table 3: Total test performance of the mobile PHM system.

Evaluation metrics Values (%)
Sensitivity 100
Specificity 96.6
Accuracy 97
Precision 81.3

matrix, where each cell contains the number of ECG records
classified for the corresponding combination of estimated
and true outputs for normal and abnormal ECG patterns
(Table 2).

The total test performance was determined by evaluation
metrics (Table 3): accuracy (ratio of the number of correctly
classified ECG signals to the total number of ECG signals
classified), sensitivity (rate of correctly classified abnormal
ECG signals among all abnormal ECG signals), specificity
(rate of correctly classified normal ECG signals among all
normal ECG signals), and precision (rate of correctly classi-
fied abnormal ECG signals among all of detected abnormal
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(a) (b) (c)

(d) (e) (f)

Figure 6: ECG signal processing: (a) first stage of amplification; (b) impedance coupling; (c) second stage of amplification; (d) low-pass
filtering; (e) high-pass filtering; (f) positive ECG signal on smartphone screen.

Figure 7: Screenshots of ECG analysis process on smartphone.

Figure 8: Neural network architecture with the best performance.

ECG signals). These metrics are relevant to performance
for medical diagnosis applications [52]. Finally, a posterior
survey indicated that the majority of the participants found
the smartphone application easy to use and considered the
time spent learning how to use the mobile ECG monitoring
system was reasonable.

4. Discussion

Recent technological advances in integration and minia-
turization of physical sensors and increasing computing
capability of smartphones have enabled the development of
mobile PHM systems as a cost-effective strategy to support
healthcare that is focused on the consumer, transparency,
convenience, and prevention [53]. Clinical studies reported
high sensitivity and specificity at detecting atrial fibrillation
[54] and other cardiac abnormalities using wireless mobile
ECG devices [55–58]. The ability to provide pervasive heart
monitoring to anyone at any time, through natural interac-
tions between smartphone and user, overcomes constraints
of place, time, and character and provides personalized infor-
mation in a transparent form. Users can configure mobile
PHM systems to their individual needs and preferences,
taking into account age, gender, and ethnicity. Immediate
feedback alerts the user of abnormal conditions or abrupt
changes in near real-time, potentially improving outcomes.
As a final point, clinicians can receive automated updates,
providing structured CVD management while minimizing
clinical visits.

On the other hand, results of a 2014 consumer sur-
vey, performed by PricewaterhouseCoopers Health Research
Institute, showed that almost half of respondents were ready
to have an ECG device attached to their smartphone, with
results wirelessly sent to their physician [59]. Latest evidence
from LMIC suggests that mobile PHM systems can improve
lifestyle behaviors and healthcare management related to
CVD, particularly for aged people and frail users [60].
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Elderly should be the primary target of mobile ECG
monitoring systems for several reasons. Mainly, because the
population aged 65 and older is projected to be about 83.7
million in 2050 [61], worldwide epidemic of chronic diseases
is strongly linked to population aging, and the leading
contributors to disease burden in older people are CVD [6].
Nevertheless, mobile PHM systems remain in its nascent
stages related to behavioral health and older adults [9].

While research in PHM systems have demonstrated
feasibility and effectiveness across a variety of populations
and health problems, studies generally exclude older adults or
do not report significant age differences in responses to the
interventions [9]. A possible explanation is the persistence
of stereotypes that older adults are afraid, reluctant, and
incompetent to use modern technology. Besides, seniors who
may believe themselves incapable of learning to use new
technologies perpetuate many of these stereotypes [62–64].
Therefore, usability and acceptance of mobile PHM by older
adults is not only based on their healthcare requirements,
but also on their perspective of technology. Since cognitive
performance commonly declines with age, minimizing the
complexity of smartphone applications and user-interactions
could be key to the adoption of mobile PHM systems by
elderly users and should be considered in stages of design and
development [65].

In this sense, we developed a mobile PHM system for
ECG monitoring and automated classification of heartbeat
patterns to identify potential arrhythmias in elderly. The
system combines a wearable wireless sensor, mobile tech-
nology, and machine learning techniques. Software design
included specific characteristics aimed to improve usability
and acceptance of older persons. User interface to display and
classify ECG signals was simplified at one dedicated button
to minimize the amount of steps to be memorized (Figure 7).
Additionally, security mechanisms such as user identification
and passwordwere omitted to access smartphone application.

Our system has a number of advantages over previously
developedmobile PHM systems for monitoring ECG signals,
which do not report software design concept to address
the user acceptability and acceptance issue in elderly [22–
26, 28, 29], do not include automated classification [22–25],
operate with commercial sensors [29], or do not provide
internal methods for classifying arrhythmias [26, 28]. The
prototype detected normal and abnormal ECG patterns in a
group of older adults residing in a LMIC with a high degree
of accuracy (97%), sensitivity (100%), and specificity (96.6%).
Thus, our mobile ECG monitoring approach could be useful
for detecting cardiac abnormalities in the home environment
and contribute to prevention, early diagnosis, and effective
treatment of CVD, while keeping costs down and increasing
access to healthcare services for older persons.

However, the ECG monitoring and classification system
described herein has several potential limitations. First, our
system and most other mobile ECG monitors record a
single-channel ECG signal, which provides more limited
information than 12-lead ECG devices. Nevertheless, a recent
study found good correlation between smartphone ECG
and 12-lead ECG data, before and after antiarrhythmic drug
therapy [66]. Second, despite high overall recognition, the

precision of the NN classifier is only 81.3%, although false
positive signals would be recognized by physician evaluation.
Third, the system provides timely detection of abnormal ECG
patterns for further diagnosis by healthcare professionals but
does not identify specific types of cardiac disorders. Finally,
the systemwas tested using a relatively small sample (n = 100)
at a single center and primarily included Venezuelan females;
thus, the system performance characteristics might not be
generalizable to other user populations. Therefore, further
studies are necessary to extend use of mobile ECG mon-
itoring to other geographically diverse elderly populations
as well as provide a better characterization of heart rhythm
abnormalities.

5. Conclusions

The mobile ECG monitoring system described in this report
provides near real-time data and automated classification of
ECG signals from older adults. The machine learning clas-
sifier discriminates between normal and abnormal cardiac
rhythms with high accuracy. With further development and
verification, the system could provide a cost-effective strategy
for primary diagnosis of potential arrhythmias and improve
preventive healthcare, particularly in population of solitary
elderly.
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