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The isotropy boundary (IB, dashed line) is shifted toward the equator as the magnetic field 
decreases (Figure 4). The isotropy boundary in different hemispheres differed by 5 degrees in the same 
UT and MLT sector. 

This study shows the influence of the interhemispheric asymmetry of the Earth's magnetic field on 
the intensity of relativistic electron fluxes and, to a lesser extent, on energetic proton fluxes. The flux 
intensity increases with a decrease in the magnetic field at the orbit of the low-orbiting satellite. The 
lower the magnetic field, the longer the observation time of these fluxes. As the magnetic field decreases, 
the isotropy boundary is shifted toward the equator. 
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Introduction. The ionosphere is the ionized region of the Earth's atmosphere that is located 
between ~60 and ~1000 km of altitude. It is largely impacted by solar events and geomagnetic activity, 
as well as by the changes in the neutral atmosphere, for example [1,2]. Since the establishment of the 
Mexican Space Weather Service (SCiESMEX, acronym in Spanish) that forms part of the National 
Space Weather Laboratory at the Institute of Geophysics, the systematic regional conditions monitoring 
allows us to perform the diagnostics and to study the behavior of the ionosphere over Mexico [3,4]. 

Several authors have addressed the ionospheric disturbances related to earthquakes that occurred 
in different regions [5-12]. The difficulty for these studies is that the ionospheric disturbances detected 
and associated with some earthquakes can be caused by other natural phenomena, as it is known that the 
ionosphere responds to changes in Space Weather conditions, explosions of different type, tropical 
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cyclones, hurricanes, etc. Therefore, the key issue is to distinguish between the ionospheric disturbances 
triggered by earthquakes and by other events. 

The disturbances registered after the impact of an earthquake are known as Co-seismic Ionospheric 
Disturbances (CID). In general, these are caused by the atmospheric waves generated by earthquakes. 
The triggering mechanism can include direct acoustic waves excited by vertical crustal movements or 
by the sea surface, Rayleigh surface waves and internal gravity waves. Once the atmospheric waves 
reach the heights of the F region of the ionosphere, they can produce irregularities in the electron 
concentration. 

The ionospheric response characteristics and the mechanisms that produce disturbances can differ 
in each particular region. The response depends on the earthquake magnitude and the regional 
atmospheric and ionospheric conditions. According to the literature, the earthquakes of magnitude Mw > 
6 are likely to provoke the ionospheric response. The aim of this study was to verify the possibility of 
detection of the ionospheric response over Mexico using Rate of TEC index (ROTI). This is a case study.  

Description of the considered event. The earthquake considered in this study occurred on 

of the epicenter whose geographic coordinates are 
The depth was 12 km. The earthquake was characterized by Mw=6.9 being one of the strongest recent 
earthquakes in Mexico. To identify the presence or absence of CIDs, the GNSS regional data was 
involved.  

 
FIGURE 1. Michoacan earthquake location. 

Data description. Regional GNSS data, provided by SSN, TLALOCNet and SSN-TLALOCNet 
networks, were involved in the analysis. Figure 2 illustrates the dual-frequency GNSS receiver station 
locations. First, slant Total Electron Content values were calculated. Then, the time series of ROTI [13] 
were obtained. 

 

FIGURE 2. Map of GNSS receiver stations whose data were used for the study. 
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Results. First, ROTI series were analyzed at different Lines-of-Sites (LoSs) to GPS satellites during 
the time interval beginning from 30 minutes before the seismic event and four hours after it. In most 
cases, ROTI did not show significant peaks. Only small enhancements of the index were detected at the 
particular LoSs. Figure 3 illustrates the obtained variations; red vertical lines mark the beginning of 
small ROTI increases at each LoS. Furthermore, we constructed the sub-ionospheric points map that 
corresponded to the moments for each satellite-receiver pair (not shown for economy of space). It 
resulted that all the points were located northward from the Mexican territory. The distances from the 
epicenter and the time moments corresponding to each plotted point clearly indicated that ROTI showed 
weak disturbances. However, these were not related to the considered earthquake at the south of Mexico. 
Indeed, according to the literature some earthquakes do not generate large responses in the ionosphere, 
for example [14]. Probably, this was our case. It is also worth noting that some earthquakes can cause a 
rather weak response far from the epicenter (at a distance of ~500-800 km). For this study case, the 
detected ROTI peaks may not be clearly associated to the earthquake because of the geometry of LoSs 
at which these peaks were registered. 

 
FIGURE 3. ROTI variations at LoSs between different receivers and GPS satellites on September 22, 2022. 
Dotted vertical line indicates the moment of the earthquake. The Y-axis unit is 0.3 TECU. 
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Conclusions. The preliminary analysis of the earthquake that occurred on September 22, 2022 in 
Mexico showed that no clear ionospheric response was detected with ROTI time series. It may be 
explained by the fact that ROTI is not the appropriate tool for the weak ionospheric disturbance detection 
in the region. The study of other ionospheric parameters is needed. Another possibility is that the GNSS 
data time resolution was low (1 sec). At the same time, it is possible that the ionospheric response was 
absent in this particular case. 
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Introduction. The Mexican Space Weather Service (SCiESMEX, acronym in Spanish) realizes the 
continuous monitoring of regional Space Weather conditions. One of the parameters provided by the 
service is the weekly Space Weather report published at SCiESMEX official web page: 
www.sciesmex.unam.mx/blog/category/reporte-semanal-de-clima-espacial. Vertical Total Electron 
Content (TEC) is one of the parameters that is monitored. Hourly absolute TEC values and 27-day 
running median TEC values are reported every week. TEC values are calculated with data from GNSS 
receiver station UCOE located in the center of Mexico (Lat ; Lon ). Figure 1 shows 
its location. 

 
FIGURE 1. UCOE station location. 

According to the previous studies, the short-term TEC enhancements are probable over the North 
American sector during geomagnetic storms [1,2]. The results of [2] were obtained with data limited to 
a time period ending in 2015. The aim of this work is to verify if the occurrence of the short-time TEC 
enhancements is still the feature of the ionosphere over Mexico. The weekly reports by SCiESMEX 
during the period between 2016 and 2022 were used to answer this question. 

Results. For this study, we considered TEC to be increased/decreased when the positive/negative 
TEC deviation from its quiet median value exceeded 30%. The representative examples of TEC 
increases and decreases are shown in Figure 2 (left and right panels correspondingly). The statistical 
results are shown in Table 1. First, we revealed all the cases of TEC deviations being more than 30%. 
Further, these deviations were divided into those observed under disturbed and quiet geomagnetic 


