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Abstract

Background: Bacterial infections are responsible of high economic losses in aquaculture. Mexican golden trout
(Oncorhynchus chrysogaster) is a threatened native trout species that has been introduced in aquaculture both for
species conservation and breeding for production and for which no studies of bacterial infections have been reported.

Case presentation: Fish from juvenile stages of Mexican golden trout showed an infectious outbreak in a farm in
co-culture with rainbow trout (Oncorhynchus mykiss), showing external puntiform red lesions around the mouth and
caudal pedunculus resembling furuncles by Aeromonas spp. and causing an accumulated mortality of 91%. Isolation
and molecular identification of bacteria from lesions and internal organs showed the presence of Aeromonas
bestiarum, Aeromonas sobria, Plesiomonas shigelloides and Ichthyobodo necator isolated from a single individual. All
bacterial isolates were resistant to amoxicillin-clavulanic acid and cefazoline. P. shigelloides was resistant to third
generation β-lactamics.

Conclusions: This is the first report of coinfection by Aeromonas bestiarum, Aeromonas sobria, Plesiomonas shigelloides
and Ichthyobodo necator in an individual of Mexican golden trout in co-culture with rainbow trout. Resistance to
β-lactams suggests the acquisition of genetic determinants from water contamination by human- or
livestock-associated activities.
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Highlights
1. This is the first report of a coinfection by Aeromonas bestiarum, Aeromonas sobria, Plesiomonas shigelloides and the

ectoparasite Ichthyobodo necator in a Mexican golden trout (Oncorynchus chrysogaster), a threatened native species.
2. The antibiotic resistance profiles suggest the influence of the water source contaminated by human activities.

Keywords: Salmonids, Oncorhynchus chrysogaster, Bacterial coinfection, Antimicrobial resistance

Background
Mexico has a high diversity of endemic trout species
which are considered the most southerly salmonids com-
pared to the natural distribution of other salmonids [1–
3]. Mexican golden trout (Oncorhynchus chrysogaster) is a
native species living at heights greater than 1900 m over
the sea level, in the basins of the Sinaloa, Culiacán and
El Fuerte rivers in the Sierra Madre Occidental in Méx-
ico. Mexican golden trout is the most important source
of food protein for surrounding human populations [1, 4].
Mexican golden trout is considered either a threatened or
a near threatened native species by International Union
for the Conservation of Nature and Natural Resources
(IUCN) [4] or national NOM-059-SEMARNAT-2010 [5]
regulatory organisms, respectively. The threatened condi-
tion is due to deforestation, habitat degradation, climate
change and overexploitation [2]. Another threat for Mex-
ican golden trout is the current hybridization with an
exotic salmonid, the rainbow trout (Oncorynchus mykiss)
which is considered one of the more harmful to native fish
exotic species [4, 6].
The genetic background of native trout provides this

species with a unique adaptation to environment that are
not favourable to other salmonids, so commercial breed-
ing programs have been proposed [1, 2] to avoid loss of
genetic background for the native species [7, 8]. Impor-
tant threats for aquaculture are also illnesses; accounting
for 50% of the decrease in production, being those caused
by bacteria the most significant [9, 10].
Aeromonas spp. are important pathogens for aqua-

culture [11]. They are Gram-negative, oxidase positive
bacilli [12]. All species but A. media and A. salmoni-
cida are motil due to the presence of a polar flagellum
and all are ubiquitous of brackish water and freshwa-
ters [13]. A. salmonicida, A. hydrophila, A. caviae, A.
veronii biovar sobria, A. veronii biovar veronii, A. dhak-
ensis, A. encheleia, A. allosaccharophila, A. schubertii, A.
bestiarum,A. sobria,A. piscicola andA. jandaei have been
reported as pathogens in fish culture [14–16]. Particu-
larly important are A. hydrophila, A. caviae and A. veronii
which cause sepsis and ulcerative syndrome with a high
economic impact on production [17]. A. salmonicida has
been recognized as the causal agent of the so-called “Ulcer

disease” or “Red-Sore disease” [18] which may reach mor-
talities to about 90% in fish farms [19]. To date, there are
no reports of Aeromonas spp.-related disease in Mexican
golden trout.
Plesiomonas shigelloides is also a Gram-negative, oxi-

dase positive, motile Enterobacteriaceae [20]. Along with
Aeromonas spp. and Fusobacterium mortiferum, they
are common pathogens in the gastrointestinal tract of
freshwater fish from orders Perciformes (Micropterus
salmoides, Lepomi macrochirus), Siluriformes (Hyposto-
mus auroguttatus, Ictalurus punctatus, Pimeolodus mac-
ulatus), Salmoniformes (O. mykiss) and Characiformes
(Prochilodus argenteus) among others [21–23]. In rainbow
trout (Oncorhynchus mykiss) P. shigelloides infections has
been associated with thin, weak, 1-2 year old fish show-
ing yellowish exudate from anus, petechiae and ascites
in internal organs and 40% mortality [24]. In grass carp
(Ctenopharyngodon idellus) P. shigelloides causes muscu-
lar erosion [25] while in silver carp (Hypophthalmichthys
molitrix) 60% mortality showing exophthalmia and dif-
fuse haemorrhagic spots [26]. In ornamental cichlids P.
shigelloidesmay cause up to 100% mortality [27].
Infestations by parasites from the genus Ichthyobodo,

have been reported in salmonids from the genus
Oncorhynchus [9, 28–33]. In particular, Ichthyobodo neca-
tor can cause mortalities of up to 40% [28, 32]. Fish
showing Ichthyobodosis usually show a grayish layer over
the skin, loss of epidermis and small ulcers, which have
been related to secondary infections [34]. The goal of the
present study was to identify bacteria associated with an
apparent outbreak of Red-Sore disease in a farm cultivat-
ing both Mexican golden trout and rainbow trout.

Case presentation
Case history
In a rainbow trout (Oncorhynchus mykiss) production
farm in the municipality of Pucuato, in the State of
Michoacán de Ocampo, México, located at 19◦39’N,
100◦45’O and 2,511 m.a.s.l., Mexican golden trout
(Oncorhynchus chrysogaster) is also cultivated as an exper-
imental approach for domestication and farming. Rain-
bow trout is cultivated in concrete tanks fed with water
from the “El Retranque” dam in Pucuato. This facility also
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contains an experimental area with PVC gutters and glass
aquariums. The water source for this area is from a spring
shared with the nearest human settlement in the town
of Pucuato. In September, 2019, the experimental Mex-
ican golden trout showed an outbreak of an infectious
disease with a duration of 35 days that caused 91% of accu-
mulated mortality, with 12 of 131 individuals surviving.
On the 33rd day, 6 specimens were collected with mean
lengths and weighs of 11.33 cm and 53.9 g, respectively.
The specimens were transported to the laboratory alive
for clinical descriptions of pathological signs and micro-
biological analysis. Specimens showed normal swimming
with preferent location at the borders of the container. Red
and inflamed lesions were observed in the abdomen and
mouth, fins were haemorrhagic and gills were inflamed

Fig. 1 Lesions in Mexican golden trout. External lesions: a Ulcer and
grayish layer over the skin; bMouth lesion and scale loss; c Skin ulcer
in peduncle. Internal lesions. d Kidney inflammation with abnormal
firmness; e necrotic kidney; f gelatinous yellow faeces and spleen
presenting black spots; g stomach with low food content Arrows
point to the lesions

with petechiae (Fig. 1). An ectoparasite, Ichthyobodo neca-
tor, was identified from fresh samples of skin and gills.
Stomachs showed low content of chyme. The bowel
showed either soft brown (4 individuals) or gelatinous
yellow (2 individuals) faeces. Gallbladders were yellow.
Spleens with black spots, abnormal firmness and presence
of fat. Kidneys showedmild inflammation, abnormal firm-
ness and in one individual it was necrotic. For microbio-
logical analysis, samples from skin, inflamed fins, gelati-
nous faeces, kidney, spleen, brain, heart and gallbladder
were collected with a cotton swab [35] and plated in rich
(Soybean Trypticase, Brain-Heart Infusion) and selec-
tive (McConkey, Salmonella-Shigella, Cefsulodin-irgasan-
novobiocin – CIN -, Cetrimide, Glutamate-starch-phenol
red – GSP - and Sabourad) solid culture media. Isolates
were obtained from rich media and GSP agar which is
a selective medium for Aeromonas spp. Since signs were
similar to Red Sore Disease, we proceed to analyse only
GSP agar isolates for the search of Aeromonas spp.
At the 3rd, 5th and 7th day of the beginning of the out-

break, the volume of water in the tanks was reduced to
50% and 25 ml/l of 10% of commercial aldehyde prod-
uct (Paraguard, Seachem) were added. On day 8 and 10,
25mg/l of kanamycin sulfate (Kanaplex, Seachem) was
applied. From days 12th to 16th, 20 mg/l of a mixture of
Sulfamethoxypyridacin (125 mg), Trimethoprim (25 mg)
and tylosine (30 mg) per g of product (Koryn Triple,
Tornel). On days 17 to 19, Kanaplex was applied again
but mixed with 10 g/l NaCl. From days 21 to 28, oxyte-
tracycline (20 mg/kg of fish weight) was applied until
mortality stopped. Florfenicol (Florfen 10, Preveson) 10
mg/kg of live weight was then incorporated in the food for
6 additional days, until fish do not take the food anymore.
Bacterial isolation was performed as described in Whit-

man et al. (2004). Liver, spleen and kidney from five
individuals with Red Sore disease signs were aseptically
collected and samples were inoculated in GSP culture
medium which is selective for the genus Aeromonas. Yel-
low colonies formed by Gram-negative oxidase positive
bacilli were further analysed for motility and glucose fer-
mentation. Isolates that fit to Aeromonas spp. phenotype
were stored in Brain-Heart infusion (BHI) added with 15%
glycerol at -75◦C for further characterization. Molecu-
lar identification of presumptive Aeromonas spp. isolates
was performed by sequencing an 820 bp fragment from
rpoD gene [36]. Sequences were obtained from Macro-
gen (Korea) and assembled with Unipro UGENE v39.0
sequence assembly software v5.15 [37]. Sequences were
registered under GenBank numbers MZ668583 (RSDI-
X6), MZ668586 (RSDI-P6), MZ668585 (RSDI-R6) and
MZ668584 (RSDI-Q6). Similarity search was performed
with Basic Local Alignment Research Tool (BLAST) at
the National Center of Biotechnology Information (NCBI,
USA). Four bacterial isolates were obtained. Two of them
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correspond to Aeromonas bestiarum isolated from oral
lesion (RSDI-X6) and spleen (RSDI-P6) with 99.27% and
99.05% of sequence identity for each sequence. One isolate
(RSDI-R6) sequence was 98.61% identical to Aeromonas
sobria isolated from kidney, and the last one (RSDI-Q6)
showed also 99.29% identity with a P. shigelloides sequence
and was isolated from spleen. Isolates RSDI-P6, RSDI-R6
and RSDI-Q6 were recovered from the same individual.
To assess evolutionary relatedness of the bacterial species,
a similarity tree (Fig. 2) was constructed using MEGA
(Molecular Evolutionary Genetics Analysis) version X
software [38]. Evolutionary relatedness was inferred using
the Neighbour joining method [39]. Confidence values
were estimated with a bootstrap test with 1000 replicates
[40] and evolutionary distances with the Kimura-2 param-
eter method [41]. Figure 2 shows strong evolutionary
relatedness of our A. bestiarum (RSDI-X6, RSDI-P6, 100%
of confidence) and A. sobria (RSDI-R6, 100% of confi-
dence) isolates with reference sequences. Isolate RSDI-Q6
identified as P. shigelloides, also associated with a reference
sequence with 100% of confidence.
Antimicrobial sensitivity tests were performed accord-

ing to the Clinical and Laboratory Standards Institute
(CLSI, USA) manuals M45 and M100 for disk dif-
fusion tests [42, 43]. Isolates were tested against 21
antibiotics at their specified concentration (Table 1).
Briefly, 24 h cultures at 28◦C were adjusted to an
OD610nm of 0.5-0.7 and plated with a cotton swab
in Muller-Hinton agar over which sensidiscs (Oxoid)
were placed. After 24h, the inhibition zone was mea-
sured with a Vernier calibrator. The three Aeromonas
spp. isolates were resistant or intermediate resistant to
Amoxicillin-clavulanic acid, ampicillin-sulbactam, cefa-
zolin and cefoxitin. RSDI-X6 and RSDI-P6 A. bestiarum
isolates were resistant to piperacillin-tazobactam while A.
sobria (RSDI-R6) showed intermediate susceptibility. The
three Aeromonas spp. Isolates were resistant to carbapen-
ems (ertapenem, imipenem, meropenem). Aeromonas
spp. Isolates were sensitive to cefepime, cefotaxime, cef-
tazidime, ceftriaxone, cefuroxime sodium, aztreonam,
tetracycline, ciprofloxacin, levofloxacin, trimethoprim-
sulfamethoxazole and chloramphenicol.
P. shigelloides (RSDI-Q6) isolate showed resistance to

cefazolin, cefotaxime, meropenem, amikacin, gentamicin,
intermediate resistance to amoxicillin-clavulanic acid, cef-
tazidime and meropenem, and was sensitive to the rest of
the antibiotics.
For the identification of ectoparasites, wet mount exam-

ination of gill clips and skin scrapes taken from several
sites on the fish were examined by light microscopy. I.
necator was identified in skins and gills samples. Due to
the high mortality rate and the late moment in which
samples were collected for analysis, it was not possible to
analyse healthy fish from this outbreak for the search of

ectoparasites. However, in august 2018, in sick rainbow
trouts from the same farm, A. hydrophila, A. sobria, or A.
allosaccharophyla were isolated from internal organs, but
no ectoparasites were observed. In December 2018, nei-
ther of the above-mentioned bacteria nor ectoparasites,
were found in healthy fish from the same farm.

Discussion and conclusions
Although Mexican golden trout is an endangered
species ongoing transition to commercial exploitation, no
research is available on its bacterial pathogens. This is the
first report of coinfection of Mexican golden trout with A.
bestiarum, A. sobria, P. shigelloides and the ectoparasite
Ichthyobodo necator.
I. necator is a common parasite of the genus

Oncorhynchus, infesting species such as O. mykiss, O.
tshawytscha,O.masou,O. gorbuscha,O. keta yO. nerka [9,
28–33]. In this report, A. bestiarum RSDI-X6 was isolated
from an external lesion. Epithelial destruction by ectopar-
asites causes an imbalance in osmoregulation followed
by hyperplasia and lamellar fusion of the gills followed
by respiratory malfunction [28, 44]. Synergistic effects of
ectoparasites and bacteria co-infecting salmonids, have
been described [45–47], but has also been suggested that
ectoparasites may act as vectors of bacteria in fish infec-
tions [48–50]. Further studies are necessary to demon-
strate that I. necator has a role as a vector of bacterial
infections in Mexican golden trout.
Aeromonas spp. are well known to cause high mor-

tality in salmonids [18, 51].In the aquatic environment,
fish are exposed to a great variety of pathogens [52] with
co-infections as a factor increasing susceptibility [53]. Co-
infections can be a challenge for diagnosis and treatment
[52]. To the best of our knowledge, there is only a report
on bacterial co-infections for the genus Oncorhynchus.
In a study of pathogen prevalence in Chinook salmon
(O. tshawytscha) several bacterial pathogens were iden-
tified, but a significant association was only observed
for Renibacterium salmoninarum and aeromonads; R.
salmoninarum and A. salmonicida were the most abun-
dant pathogens with prevalence values about 25% and
15%, respectively [54]. Bacterial co-infections are com-
mon in other fish species in aquaculture and may alter
prevalence, severity and impact on fish disease or success
of vaccination strategies due to the synergistic effect of the
pathogens [53]. In Nile tilapia (Oreochromis niloticus), co-
infections have been described with Streptococcus agalac-
tiae, Streptococcus iniae, Francisella noatunensis subsp.
orientalis, A. hydrophila, P. shigelloides and Edwardsiella
tarda [55].
A. bestiarum, A. sobria and P. shigelloides identified in

Mexican golden trout in this work, are common inhab-
itants of aquatic ecosystems. Aeromonas spp. and P.
shigelloides are also considered as emergent pathogens of



Fuentes-Valencia et al. BMC Veterinary Research          (2022) 18:137 Page 5 of 11

Fig. 2 Similarity tree of bacterial isolates. Black dots represent the position in the tree of the isolates reported in this work. Numbers in each node are
the confidence values. Distance bar is the number of nucleotide substitutions per site
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Table 1 Antibiotic sensitivity test results

Antimicrobial agent Concentration (μg) Isolates

RSDI-X6
Aeromonas
bestiarum

RSDI-R6
Aeromonas
sobria

RSDI-P6
Aeromonas
bestiarum

RSDI-Q6
Plesiomonas
shigelloides

Interpretative critera of sensitivity

Penicillins in combination with other β-lactamics / β-lactamase inhibitors

Amoxicillin- clavulanic acid AMC 20/10 R R R I

Ampicillin – sulbactam SAM 10/10 R R R S

Piperacillin – tazobactam TZP 100/10 R I R S

Cephalosporins

Cefazolin KZ 30 R R R R

Cefepime FEP 30 S S S S

Cefotaxime CTX 30 S S S R

Cefoxitin FOX 30 R R R S

Ceftazidime CAZ 30 S S S I

Ceftriaxone CRO 30 S S S S

Cefuroxime sodium CXM 30 S S S S

Carbapenems

Ertapanem ETP 10 R R R S

Imipenem IPM 10 R R R I

Meropenem MEM 10 R R R R

Monobactams

Aztreonam AZT30 S S S S

Aminoglycosides
Amikacin AK 30 S S I R

Gentamicin CN 10 S I I R

Tetracyclines

Tetracycline TE 30 S S S S

Quinolones

Ciprofloxacin CIP 5 S S S I

Levofloxacin LEV 5 S S S S

Folate pathway inhibitors

Trimethoprim/sulfamethoxazole SXT 1.25/23.75 S S S S

Phenicols

Chloramphenicol C 30 S S S S

intestinal and extraintestinal diseases [56–58].Aeromonas
spp. and P. shigelloides were previously isolated from fish,
amphibians, molluscs, crustaceans, reptiles and mam-
mals [12, 59–61]. Aeromonas spp. have been proposed as
indicators of the presence and development of microbial
resistance to antibiotics both in fish farms and natural
environment, and as a potential source of transmission
of resistance determinants to human pathogens, as they
are zoonotic [58, 62]. Aeromonas spp. are also com-
monly found in vegetables, foods of animal origin, faeces
of animal and human origin and contaminated water as
important sources of transmission to humans [63]. In

intestinal outbreaks, frozen foods or insufficiently cooked
meals have also been associated with Aeromonas spp.
transmission [64]. In some foods, Aeromonas spp. cell
densities may reach up to 105 bacteria·g−1 or ml−1 [57].
Due to the presence of antimicrobial resistance, viru-
lence and biofilm producing gene markers in isolates from
aquaculture and abattoir environments, Aeromonas spp.
are becoming good indicators of water and food quality
[65, 66].
P. shigelloides, previously classified as Aeromonas shigel-

loides, share several features withAeromonas spp. It is also
commonly found in foods of animal and plant origin [57].
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P. shigelloides has high clinical relevance because it has
been ranked as the third and fourth causes of gastroen-
teritis in Nigeria and China, respectively [67, 68], being
water its most common source of transmission [64]. P.
shigelloides may grow easily in a great variety of foods
[57]. Ingestion of seafoods as oysters and uncooked fish
meals have been associated with outbreaks of P. shigel-
loides infections [64]. So, since Aeromonas spp. and P.
shigelloides are both considered as good indicators of food
contamination and as emergent pathogens in aquacul-
ture, the finding of these two pathogens in co-infection
in an outbreak in Mexican golden trout suggest external
contamination of water sources.
In this report three of the Aeromonas spp. isolates

from Mexican golden trout were resistant to β-lactamic
antibiotics, particularly to first and second generation
cephalosporins (cefazolin and cefoxitin) and β-lactamase
inhibitors (clavulanic acid and sulbactam). Amoxicillin
and ampicillin resistance were also reported for rain-
bow trout (O. mykiss), tilapia (O. mossambicus) and Koi
carp (Cyprinus carpio) Aeromonas spp. isolates in South
Africa [69]. Resistance to β-lactams have been increasing
in Aeromonas spp. from clinical and environmental origin
[70, 71]. In México, Aeromonas spp. isolates from rainbow
trout contained extended spectrum β-lactamases (ESBL)
encoding genes (blaSHV y blaCphA/IMIS) [72]. Aeromonas
spp. isolates from this report were susceptible to third
generation cephalosporins and monobactam, suggesting
the absence of ESBL gene determinants, as has been
reported for trout, tilapia and Koi carp isolates [69]. Sus-
ceptibility to monobactams, tetracyclines, quinolones and
phenicols in our Aeromonas spp. isolates are in accor-
dance with a previous study [12].
Our Plesiomonas shigelloides isolate showed resistance

and intermediate resistance to cefotaxime, ceftazidime
respectively, third generation cephalosporins for which
ESBL bacteria are resistant. ESBLs are common in
Escherichia coli and other Enterobacteriaceae [73], which
were found in isolates from intestinal samples in fish
from India and Switzerland [74, 75]. Since third gener-
ation cephalosporins are not commonly recommended
for treatment of bacterial infections in aquaculture, it is
possible that ESBL genetic determinants may be mobi-
lizing from contaminating enterobacteria from the envi-
ronment that are horizontally transferring their genes to
P. shigelloides. High prevalence of cephalosporin resistant
P. shigelloides suggest also high level of contamination of
water [76], although isolates from other sources (humans,
dogs, aquarium) were susceptible to cephalosporins [77].
P. shigelloides isolate RSDI-Q6 also showed intermediate
resistance to β-lactams (amoxicillin-clavulanic acid) and a
first-generation cephalosporin (cefazolin). Resistance to a
wide variety of β-lactams in P. shigelloides isolates is com-
mon [78]. This result is in contrast to that reported for

P. shigelloides isolates from tilapia which were susceptible
to amoxicillin-clavulanic acid, ceftazidime and gentamicin
[79]. These same authors also reported resistance to tetra-
cycline and chloramphenicol, for which our isolate was
susceptible. Aeromonas spp. and P. shigelloides isolates in
this work were either resistant or intermediate-resistant to
amoxicillin-clavulanic acid and cefazolin, a β-lactam/β-
lactamase inhibitor, a first-generation cephalosporin and
carbapenems. Neither of these antibiotics are approved by
the Food and Drug Administration from USA which are
also applied in Mexican regulations, so genetic resistance
may be acquired from other bacterial species from ani-
mal or human origin contaminating the water. Although it
has been suggested that there may be some intrinsic resis-
tance to these antibiotics for these species [79]; evidence
is also reported that describe sensitive and resistant iso-
lates both from clinical and environmental origin [80] for
Aeromonas spp. It is suggested that variation in antimi-
crobial susceptibility may be due to different genetic
backgrounds in the environment and the selective pres-
sures by antibiotics contaminating the water sources [70],
reinforcing the hypothesis that antibiotic resistance deter-
minants in bacteria from aquatic environments may be
a consequence of anthropogenic contamination [62]. The
presence of Aeromonas spp. showing antibiotic resistance
may be used as indicators of contamination in vulnera-
ble aquatic environments [81]. According to this, presence
of integrons and other mobile genetic elements are fre-
quently found that encode antibiotic resistance determi-
nants in Aeromonas spp. [82]. Antibiotics are commonly
used in anthropogenic activities related to aquaculture,
animal production and even in treatment of compan-
ion animals, so its presence is frequent in the environ-
ment and they become a risk for public health [83, 84].
Resistance to antibiotics not commonly used in aqua-
culture is also frequent in other fish pathogenic bacteria
[85]. Antimicrobial resistance is considered an important
health risk in aquaculture [86], particularly for Mexican
golden trout and their cross breeds due to their threat-
ened condition. This particular threat for Mexican golden
trout is added to others as geographic isolation, habitat
transformation, chemical contamination from pesticides
and industrial and mining activities in the surrounding
environment [87, 88].
This report describes the co-infection of Aeromonas

spp. and P. shigelloides in a Mexican golden trout opera-
tion and outlines their antibiotic resistance to β-lactams
and third generation cephalosporines which suggests an
infection from contaminated waters. Due to the emerg-
ing importance of these bacterial species as environmental
quality markers and as emergent zoonotic pathogens, it
is important to make a continuous surveillance of these
pathogens in aquaculture. To complement surveillance,
it is necessary to perform studies on the presence of



Fuentes-Valencia et al. BMC Veterinary Research          (2022) 18:137 Page 8 of 11

virulence factors, haemagglutination patterns, infectivity
in cellular models, and biofilm forming abilities, among
others, to better understand the pathogenic potential of
each isolate. Studies with multilocus sequence typing
(MLST) [89] and macro-restriction analysis in pulse-field
gel electrophoresis (PFGE) [90] will also help to under-
stand Aeromonads pathogen diversity and the possible
relation of particular clones as human or fish pathogens
or as environmental strains [91]. Comparative genome
analysis of our Aeromonas spp. and P. shigelloides iso-
lates against others from different sources will also allow
understanding differences in pathogenic potential and
host specificity and how are they contributing to the
co-infection process.
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